
- •Релейная защита и автоматизация систем электроснабжения
- •1.Информация о дисциплине
- •1.1. Предисловие
- •1.2. Содержание дисциплины и виды учебной работы
- •1.2.1. Содержание дисциплины по гос
- •1.2.2. Объем дисциплины и виды учебной работы
- •1.2.3. Перечень практических занятий и видов контроля
- •2.2. Тематический план дисциплины
- •2.2.1. Тематический план дисциплины для студентов очной формы обучения
- •2.2.2. Тематический план дисциплины для студентов очно-заочной формы обучения
- •2.2.3. Тематический план дисциплины для студентов заочной формы обучения
- •2.3. Структурно-логическая схема дисциплины
- •2.4. Временной график изучения дисциплины при использовании информационно-коммуникационных технологий
- •2.5. Практический блок
- •2.5.2.2. Лабораторные работы (заочная форма обучения)
- •2.6. Балльно-рейтинговая система оценки знаний
- •3. Информационные ресурсы дисциплины
- •3.1. Библиографический список
- •3.2. Опорный конспект лекций по дисциплине Введение
- •Раздел 1. Общие вопросы релейной защиты
- •1.1. Назначение и виды релейных защит в системах электроснабжения
- •1.2. Повреждения и ненормальные режимы
- •1.3. Цифровые устройства релейной защиты
- •1.3.1. Основные свойства цифровых защит
- •1.3.2. Структура цифровых устройств релейной защиты
- •1.3.3. Отличительные особенности цифровых защит
- •Раздел 2. Максимальные токовые защиты
- •2.1. Виды максимальных токовых защит
- •2.1.1. Токовые защиты от междуфазных кз линий с односторонним питанием
- •2.1.2. Максимальная токовая защита. Токовая отсечка. Токовая защита со ступенчатой характеристикой выдержки времени
- •2.2. Исполнение токовых защит
- •2.2.1. Трансформаторы тока в устройствах релейной защиты.
- •2.2.2. Измерительные органы релейной защиты
- •2.2.3. Логические органы релейной защиты
- •2.2.4. Источники оперативного тока
- •2.2.5. Принципиальные схемы токовых защит
- •Раздел 3. Защиты от замыканий на землю. Токовые направленные защиты
- •3.1. Токовая защита линий от замыканий на землю в сети с заземленной, изолированной и компенсированной нейтралью
- •3.2. Токовая направленная защита
- •Раздел 4. Дистанционные и дифференциальные защиты линий?
- •4.1. Дистанционные защиты
- •4.2. Дифференциальные защиты
- •Раздел 5. Защита трансформаторов и электродвигателей
- •5.1. Защиты трансформаторов
- •Пример расчета дифзащиты (взят из фирменных материалов)
- •5.2. Защиты электродвигателей
- •Раздел 6. Устройства автоматики электрических сетей
- •6.1. Автоматическое повторное включение
- •6.1.1. Автоматическое повторное включение линий
- •6.1.2. Основные варианты устройств апв
- •6.1.3. Схема апв с пуском от релейной защиты.
- •6.1.4. Успешный и неуспешный циклы апв
- •6.1.5. Схема апв с пуском от несоответствия положения ключа управления и выключателя
- •6.1.6. Механические устройства апв
- •6.1.7. Апв трансформаторов
- •6.2. Автоматическое включение резерва (авр)
- •6.2.1. Назначение и область применения авр
- •6.2.2. Выбор параметра пуска схемы авр.
- •6.2.3. Настройка элементов схемы авр
- •6.2.4. Схемы авр линий
- •6.2.5. Авр трансформаторов
- •Раздел 7. Регулирование напряжения и частоты. Управление системой электроснабжения
- •7.1. Регулирование напряжения и реактивной мощности
- •7.1.1. Регулирование коэффициента трансформации понижающего трансформатора
- •7.1.2. Автоматическое регулирование возбуждения синхронных машин
- •7.1.3. Автоматическое управление конденсаторными батареями
- •7.2. Регулирование частоты
- •7.2. Организация управления системой электроснабжения
- •Заключение
- •3.3. Глоссарий (краткий словарь терминов)
- •3.4. Учебники и учебные пособия
- •3.5. Технические средства обеспечения дисциплины
- •3.6. Методические указания к выполнению лабораторных работ Общие указания
- •Работа №1. Настройка токовых защит в программно-логической модели терминала тэмп 2501-11
- •Работа №2. Моделирование работы токовых защит в программно-логической модели терминала тэмп 2501-11
- •Работа №3. Моделирование работы автоматики в программно-логической модели терминала тэмп 2501-11
- •Работа №4. Исследование работы токовых защит и автоматики на базе реального терминала тэмп 2501-11
- •Работа №5. Исследование работы дуговой защиты шкафа кру
- •Работа №6. Изучение системы централизованного апв и авр подземной части системы электроснабжения угольной шахты
- •3.7. Методические указания к выполнению заданий практических занятий
- •3.7.1. Задания и исходные данные
- •Занятие 1. Расчет токовых защит распределительной сети
- •Занятие 3. Апв и авр в распределительной сети
- •3.7.2. Пример расчета релейной защиты и автоматики участка распределительной сети
- •Расчет токов кз
- •Расчет номинальных и максимальных рабочих токов
- •Расчет релейных защит и автоматики участка
- •4. Блок контроля освоения дисциплины
- •4.2.2. Методические указания к выполнению курсовой работы
- •4.3. Промежуточный контроль
- •4.4. Итоговый контроль Вопросы для подготовки к экзамену
- •Содержание
- •Раздел 1. Общие вопросы релейной защиты 22
- •Релейная защита и автоматизация систем электроснабжения
- •191186, Санкт-Петербург, ул. Миллионная, 5
- •Релейная защита и автоматизация систем электроснабжения
6.2.2. Выбор параметра пуска схемы авр.
Схема автоматического включения резерва должна производить включение резервного элемента при вполне определенных условиях. Правильность выбора пусковых параметров во многом определит успешность АВР и простоту схемы. Рассмотрим схему, в которой рабочая линия W1 резервируется линией W2 (рис. 6.4).
Казалось бы, схема АВР должна приходить в действие только при авариях на самой рабочей линии. Однако при этом требуются весьма избирательные пусковые органы, которые бы четко фиксировали место аварии. Наличие такого пускового органа усложняет схему АВР.
Возможен другой подход в выборе пускового параметра схемы АВР, когда схема приходит в действие при аварии не только на самой рабочей линии, но и при авариях в других точках сети. Если же авария происходит вне рабочей линии, схема блокируется, и переход на резервную линию не происходит. Преимуществом такого подхода является простота пускового органа, который может быть выполнен на базе реле напряжения. При исчезновении по любой причине напряжения на резервируемых шинах, а также при уменьшении напряжения до определенной величины, схема АВР запускается.
При
КЗ на отходящих линиях в точкахК2,
КЗ
или К4
переходить на питание по резервной
линии не имеет смысла. В этих случаях
неправильное действие схемы АВР,
запускаемой по напряжению, может быть
устранено временной задержкой и
правильным выбором уставки срабатывания
пускового реле.
Особым случаем является КЗ на шинах в точке К5. Отстроить защиту по напряжению или за счет выдержки времени от такого повреждения нельзя. На начальном этапе применения АВР это служило основным препятствием для использования простых пусковых органов по напряжению.
О
Рис.
6.4. Схема для пояснения выбора параметра
пуска АВР
При устойчивом КЗ на сборных шинах резервная линия включается кратковременно. Последующее ее отключение осуществляется действием релейной защиты.
В силу отмеченных преимуществ способ пуска схемы АВР по напряжению получил наибольшее распространение.
6.2.3. Настройка элементов схемы авр
Пусковым органом схемы АВР является реле напряжения, реагирующее на понижение напряжения в аварийных режимах. Селективное действие схемы достигается за счет правильного выбора напряжения срабатывания пускового реле. Для отстройки от КЗ за реактором или трансформатором отходящей линии (рис. 6.4, точки КЗ и К4) напряжение пуска должно быть меньше остаточного напряжения на сборных шинах при КЗ в указанных точках:
Uпуск
<
В момент самозапуска происходит снижение напряжения. В это время схема АВР не должна приходить в действие. Для этого напряжение пуска проверяется по условию
Uпуск
<
где Uс.з – напряжение на шинах в момент самозапуска;
kН =1,21,3 – коэффициент надежности.
Практически напряжение срабатывания реле выбирается равным 0,30,4Uном.
Отстройка от неправильного действия схемы АВР при КЗ на отходящей нереактированной линии (рис. 6.4, точка К2) осуществляется за счет выдержки времени. Время отключения рабочей линии выбирается больше времени срабатывания защиты отходящей линии:
tАВР=tс.з+t,
где Δt – ступень селективности.
Переход на резервную линию оправдан в случае, если последняя готова принять нагрузку. Для этого резервная линия должна в случае явного резерва находиться под напряжением. Наличие напряжения на резервной линии контролируется с помощью реле максимального напряжения (реле контроля напряжения), уставка которого выбирается по условию:
Uс.р
=
где Uраб.min – минимальное значение напряжения в рабочем режиме;
kв= 0,85 – коэффициент возврата; kн = 1,11,2 – коэффициент надежности.
При неявном резерве ток самозапуска двигателя накладывается на рабочий ток резервной линии. В этом режиме релейная защита резервной линии не должна срабатывать. Селективное действие защиты достигается за счет выбора тока срабатывания Iс.р по условию Ic.р > (1,31,4)Iс.з, где Iс.з. – ток нагрузки с учетом самозапуска двигателей.