
Лахтин_Матеориаловедение
.pdfСиликатные триплексы представляют собой два листа закаленного стекла (толщиной 2—3 мм), склеенные прозрачной эластичной полимерной пленкой. При разрушении триплекса образовавшиеся неострые осколки удерживаются на полимерной пленке. Триплексы бывают плоскими и гнутыми.
Термопан — трехслойное стекло, состоящее из двух стекол и воздушного промежутка между ними. Эта воздушная прослойка обеспечивает теплоизоляцию.
Применение технических стекол. Для остекления транспортных средств используют преимущественно триплексы, термопан и закаленные стекла.
Оптические стекла, применяемые в оптических приборах и инструментах, подразделяют на кроны, отличающиеся малым преломлением, и флинты — с высоким содержанием оксида свинца и большими значениями коэффициента преломления. Тяжелые флинты не пропускают рентгеновское и γ-излучение. Светорассеи-вающие стекла содержат в своем составе фтор.
Остекление кабин и помещений, где находятся пульты управления мартеновских и дуговых печей, прокатных станов и подъемных кранов в литейных цехах, выполняется стеклами, содержащими оксиды железа и ванадия, которые поглощают около 70 % инфракрасного излучения в интервале длин волн 0,7—3 мкм.
Кварцевое стекло вследствие высокой термической и химической стойкости применяют для изготовления тиглей, чаш, труб, наконечников, лабораторной посуды. Близкое по свойствам к кварцевому стеклу, но более технологичное кварцоидное (кремнеземное) стекло используют для электроколб, форм для точного литья и т. д. Электропроводящие (полупроводниковые) стекла: халькогенидные и оксидные ванадиевые, находят широкое применение в качестве термисторов, фотосопротивлений.
Теплозвукоизоляционные стекловолокнистые материалы.
Эти материалы имеют рыхловолокнистую структуру с большим числом воздушных прослоек, волокна в них располагаются беспорядочно. Такая структура сообщает этим материалам малую объемную массу (20—130 кг/м3), низкую теплопроводность [λ = 0,030÷ 0,0488 Вт/(м·К)].
Разновидностями стекловолокнистых материалов являются стекловата, применение которой ограничено ее хрупкостью; стекломаты — материалы АСИМ, АТИМС, АТМ-3, состоящие из стекловолокон, расположенных между двумя слоями стеклоткани или стеклосетки, простеганной стеклонитками. Они применяются в интервале температур от —60 до 600 °С. Иногда стекловолокна сочетают с термореактивной смолой, придающей матам более устойчивую рыхлую структуру (материал АТИМСС), они работают при температуре до 150 °С. Материалы, вырабатываемые из короткого волокна и синтетических смол, называются плитами. Коэффициент звукопоглощения плит при частоте 200—800 Гц равен 0,5; при частоте 8000 Гц — 0,65.
511

Стекловату, маты, плиты применяют для теплозвукоизоляции кабин самолетов, кузовов автомашин, железнодорожных вагонов, тепловозов, электровозов, корпусом судов, в холодильной технике, ими изолируют различные трубопроводы, автоклавы и т. д.
3. СИТАЛЛЫ (СТЕКЛОКРИСТАЛЛИЧЕСКИЕ МАТЕРИАЛЫ)
Ситаллы получают на основе неорганических стекол путем их полной или частичной управляемой кристаллизации. Термин «ситаллы» образован от слов: стекло и кристаллы. За рубежом их называют стеклокерамикой, пирокерамами. По структуре и технологии получения ситаллы занимают промежуточное положение между обычным стеклом и керамикой. От неорганических стекол они отличаются кристаллическим строением, а от керамических материалов — более мелкозернистой и однородной микрокристаллической структурой (рис. 237).
Ситаллы получают путем плавления стекольной шихты специального состава с добавкой нуклеаторов (катализаторов), охлаждения расплава до пластичного состояния и формования из него изделий методами стекольной технологии и последующей ситаллизации (кристаллизации). Ситалловые изделия получают также порошковым методом спекания.
В состав стекла, применяемого для получения ситаллов, входят оксиды Li2O, A12O3, SiO2, MgO, CaO и др.; катализаторы кристаллизации (нуклеаторы). К числу последних относятся соли светочувствительных металлов Аи, Ag, Си, которые являются КОЛЛОИДНЫМИ красителями и находятся в стекле в виде мельчайших коллоидно-дисперсных частиц, а также фтористые и фосфатные соединения, TiO2 и другие, представляющие собой глушители, распределяющиеся в стекле в виде плохо растворимых частичек. Нуклеаторы имеют кристаллическую решетку, подобную выделяющимся из стекла кристаллическим фазам, и способны в определенных условиях образовывать центры кристаллизации, приводя к равномерному закристаллизовыванию всей массы стекла. Ситаллы подразделяют на фотоситаллы, термоситаллы и шлакоситаллы.
Фотоситаллы получают из стекол литиевой системы с нуклеаторами — коллоидными красителями. Фотохимический процесс протекает при облучении стекла ультрафиолетовыми или рентгеновскими лучами, при этом внешний вид стекла не изменяется. Процесс кристаллизации происходит при повторном нагревании изделия.
Термоситаллы получаются из стекол систем MgO—Al2O3—SiO2, CaO—Al2O3—SiO2 и других с добавкой TiO2, FeS и т. п. нуклеаторов. Кристаллическая структура ситалла создается только в результате повторной термообработки предварительно отформованных изделий.
Структура ситаллов многофазная, состоит из зерен одной или нескольких кристаллических фаз, скрепленных между собой стекловидной прослойкой. Содержание кристаллической фазы колеблется от 30 до 95 %. Размер кристаллов обычно не превышает 1—2 мкм. По внешнему виду ситаллы могут быть непрозрачными и прозрачными (количество стеклофазы до 40 %).
Шлакоситаллы получают на основе доменных шлаков и катализаторов (сульфаты, порошки железа и др.); вводятся соединения фтора для усиления ситаллизации.
В отличие от обычного стекла, свойства которого определяются в основном его химическим составом, для ситаллов решающее значение имеют структура и фазовый состав. Причина ценных свойств ситаллов заключается в их исключительной мелкозернистости, почти идеальной поликристаллической структуре. Свойства ситаллов изотропны. В них совершенно отсутствует всякая пористость. Усадка материала при его переработке незначительна. Большая абразивная стойкость делает их малочувствительными к поверхностным дефектам.
Плотность ситаллов лежит в пределах 2400—2950 кг/'м3,
прочность при изгибе σизг = 70÷350 МПа (и даже 560 МПа), σΒ =
= 112÷161 МПа, σсж = 700÷2000 МПа, модуль упругости 84—141
ГПа. Прочность ситалла зависит от температуры: до температуры 700—780 °С прочность материала уменьшается незначительно, при более высоких температурах быстро падает. Жаропрочность ситаллов под нагрузкой составляет 800—1200 °С. Максимальная температура размягчения tpaзм = 1250÷1350 °С. Ударная вязкость ситаллов выше, чем ударная вязкость стекла (4,5 — — 10,5 кДж/м2), однако они относятся к хрупким материалам. Твердость их приближается к твердости закаленной стали (микротвердость
7000—10 500 МПа). Они весьма износостойки (fтp = = 0,07÷0,19).
Коэффициент линейного расширения лежит в пределах (7—300) 10-7 c-1. По теплопроводности ситаллы в результате повышенной плотности превосходят стекла [λ = 2÷ 7 Вт/(м·К)]. Термостойкость высокая (∆t = 500÷900 °C. Стеклокристаллические материалы обладают высокой химической устойчивостью к кислотам и щелочам, не окисляются даже при высоких температурах. Они газонепроницаемы и обладают нулевым водопоглощением. Хорошие диэлектрики.
Применение ситаллов определяется их свойствами. Из ситаллов изготовляют подшипники, детали для двигателей внутреннего сгорания, трубы для химической промышленности, оболочки вакуумных электронных приборов, детали радиоэлектроники. Ситаллы используют в качестве жаростойких покрытий для защиты
513
металлов от действия высоких температур. Их применяют в производстве текстильных машин, абразивов для шлифования, фильер для вытягивания синтетических волокон. Из ситаллов могут быть изготовлены лопасти воздушных компрессоров, сопла реактивных двигателей, они используются для изготовления точных калибров и оснований металлорежущих станков.
4. КЕРАМИЧЕСКИЕ МАТЕРИАЛЫ
Керамика — неорганический материал, получаемый из отформованных минеральных масс в процессе высокотемпературного обжига. В результате обжига (1200—2500 °С) формируется структура материала (спекание), и изделие приобретает необходимые физико-механические свойства.
Техническая керамика включает искусственно синтезированные керамические материалы различного химического и фазового состава; она обладает специфическими комплексами свойств. Такая керамика содержит минимальное количество или совсем не содержит глины. Основными компонентами технической керамики являются оксиды и бескислородные соединения металлов. Любой керамический материал является многофазной системой. В керамике могут присутствовать кристаллическая, стекловидная и газовая фазы.
Кристаллическая фаза представляет собой определенные химические соединения или твердые растворы. Эта фаза составляет основу керамики и определяет значения механической прочности, термостойкости и других ее основных свойств.
Стекловидная фаза находится в керамике в виде прослоек стекла, связывающих кристаллическую фазу. Обычно керамика содержит 1—10 % стеклофазы, которая снижает механическую прочность и ухудшает тепловые показатели. Однако стеклообразующие компоненты (глинистые вещества) облегчают технологию изготовления изделий.
Газовая фаза представляет собой газы, находящиеся в порах керамики; по этой фазе керамику подразделяют на плотную, без открытых пор и пористую. Наличие даже закрытых пор нежелательно, так как снижается механическая прочность материала.
Большинство видов специальной технической керамики обладает плотной спекшейся структурой поликристаллического строения, для ее получения применяют специфические технологические приемы.
Керамика на основе чистых оксидов. В производстве оксидной керамики используют в основном следующие оксиды: А12О3
(корунд), ZrO2, MgO, CaO, BeO, ThO2, UO2. Структура керамики однофазная поликристаллическая. Кроме кристаллической фазы может содержаться небольшое количество газов (поры) и стекловидной фазы, которая образуется в результате наличия примесей в исходных материалах. Температура плавления чистых оксидов
514

превышает 2000 °С, поэтому их относят к классу высокоогнеупоров. Как и для других неорганических материалов, оксидная керамика обладает высокой прочностью при сжатии по сравнению с прочностью при растяжении или изгибе; более прочными являются мелкокристаллические структуры, так как при крупнокристаллическом строении на границе между кристаллами возникают значительные внутренние напряжения.
С повышением температуры прочность керамики понижается (рис. 238). При использовании материалов в области высоких температур важным свойством является окисляемость. Керамика из чистых оксидов, как правило, не подвержена процессу окисления.
Керамика на основе А12О3 (корундовая) обладает высокой прочностью, которая сохраняется при высоких температурах, химически стойка, отличный диэлектрик. Термическая стойкость корунда невысокая. Изделия из него широко применяют во многих областях техники: резцы, используемые при больших скоростях резания, калибры, фильеры для протяжки стальной проволоки, детали высокотемпературных печей, подшипники печных конвейеров, детали насосов, свечи зажигания в двигателях внутреннего сгорания. Керамику с плотной структурой используют в качестве вакуумной, пористую — как термоизоляционный материал. В корундовых тиглях проводят плавление различных металлов, окси-дов, шлаков. Корундовый материал микролит (ЦМ-332) по свойствам превосходит другие инструментальные материалы, его плотность до 3960 кг/м3, σсж до 5000 МПа, твердость 92—93 HRA и красностойкость до 1200 °С. Из микролита изготовляют резцовые пластинки, фильеры, насадки, сопла, матрицы и др.
515
Особенностью оксида циркония (ZrO2) является слабокислотная или инертная природа, низкий коэффициент теплопроводности. Рекомендуемые температуры применения керамики из ZrO2 2000— 2200 °С; она используется для изготовления огнеупорных тиглей для плавки металлов и сплавов, как тепловая изоляция печей, аппаратов и реакторов, в качестве покрытия на металлах для защиты последних от действия температур.
Керамика на основе оксидов магния и кальция стойка к действию основных шлаков различных металлов, в том числе и щелочных. Термическая стойкость их низкая. Оксид магния при высоких температурах летуч, оксид кальция способен к гидратации даже на воздухе. Их применяют для изготовления тиглей, кроме того, MgO используют для футеровки печей, пирометрической аппаратуры и т. д.
Керамика на основе оксида бериллия отличается высокой теплопроводностью, что сообщает ей высокую термостойкость. Прочностные свойства материала невысокие. Оксид бериллия обладает способностью рассеивать ионизирующее излучение высоких энергий, имеет высокий коэффициент замедления тепловых нейтронов, применяется для изготовления тиглей для плавки некоторых чистых металлов, в качестве вакуумной керамики в ядерных реакторах. Летучесть спеченных оксидов в вакууме показана на рис. 239.
Керамика на основе оксидов тория и урана имеет высокую температуру плавления, но обладает высокой плотностью и радиоактивна. Эти виды керамики применяют для изготовления тиглей для плавки родия, платины, иридия и других металлов, в конструкциях электропечей (ThO2), для тепловыделяющих элементов в энергетических реакторах (UO2).
Основные свойства керамики на основе чистых оксидов приведены в табл. 54.
Бескислородная керамика. К тугоплавким бескислородным соединениям относятся соединения элементов с углеродом (МеС)
— карбиды, с бором (МеВ) — бориды, с азотом (MeN) — нитриды, с кремнием (MeSi) — силициды и с серой (MeS) — сульфиды. Эти соединения отличаются высокими огнеупорностью (2500—3500 °С), твердостью (иногда как у алмаза) и износостойкостью по отношению к агрессивным средам. Материалы обладают высокой хрупкостью. Сопротивление окислению при высоких температурах (окалиностойкость) карбидов и боридов составляет 900—1000 °С, несколько ниже оно у нитридов. Силициды могут выдерживать температуру 1300—1700 °С (на поверхности образуется пленка кремнезема).
Карбиды. Широкое применение получил карбид кремния — карборунд (SiC). Он обладает высокой жаростойкостью (1500— 1600 °С), высокой твердостью, устойчивостью к кислотам и неустойчивостью к щелочам; применяется в качестве нагревательных стержней, защитных покрытий графита и в качестве абразива.
516

Бориды. Эти соединения обладают металлическими свойствами, их электропроводность очень высокая (ρV = (12÷57) X 10-1 Ом·м). Они износостойки, тверды, стойки к окислению. В технике получили распространение дибориды тугоплавких металлов (TiB2, ZrB2 и др.). Их легируют кремнием или дисилицидами, что делает их устойчивыми до температуры их плавления. Диборид циркония стоек в расплавах алюминия, меди, чугуна, стали и др. Его используют для изготовления термопар, работающих при температуре свыше 2000 °С в агрессивных средах, труб, емкостей, тиглей. Покрытия из боридов повышают твердость, химическую стойкость и износостойкость изделий.
Нитриды. Неметаллические нитриды являются высокотермостойкими материалами, имеют низкие теплопроводность и электропроводимость. При обычной температуре это изоляторы, а при высоких температурах — полупроводники. С повышением температуры коэффициент линейного расширения и теплоемкость увеличиваются. Твердость и прочность этих нитридов меньше, чем твердость и прочность карбидов и боридов. В вакууме при высоких температурах они разлагаются. Они стойки к окислению, действию металлических расплавов.
Нитрид бора α—BN — «белый графит» — имеет гексагональную, графитоподобную структуру. Это мягкий порошок, стойкий к нейтральной и восстановительной атмосфере, используется как огнестойкий смазочный материал, изделия из него термостойки. Спеченный нитрид бора хороший диэлектрик при 1800 °С в бескислородной среде. Наиболее чистый нитрид бора применяется в качестве материала обтекателей антенн и электронного оборудования летательных аппаратов. Другой модификацией является β-BN — алмазоподобный нитрид бора с кубической структурой, называемый эльбором. Его получают при высоком давлении и температуре 1360 °С в присутствии катализатора. Плотность эльбора 3450 кг/м3, температура плавления 3000 °С. Он является заменителем алмаза, стоек к окислению до 2000 °С (алмаз начинает окисляться при температуре 800°С).
Нитрид кремния (Si3N4) более других нитридов устойчив на воздухе и в окислительной атмосфере до 1600 °С. По удельной прочности при высоких температурах Si3N4 превосходит все конструкционные материалы, а по стоимости он дешевле жаропрочных сплавов в несколько раз. Нитрид кремния прочный, износостойкий, жаропрочный материал. Он применяется в двигателях внутреннего сгорания (головки блока цилиндров, поршни и др.), стоек к коррозии и эрозии, не боится перегрева теплонагруженных деталей.
Силициды отличаются от карбидов и боридов полупроводниковыми свойствами, окалиностойкостью, они стойки к действию кислот и щелочей. Их можно применять при температуре 1300— 1700 °С, при 1000 °С они не реагируют с расплавленным свинцом, оловом и натрием. Дисилицид молибдена (MoSi2) используется
518

наиболее широко в качестве стабильного электронагревателя в печах при температуре 1700 °С в течение нескольких тысяч часов. Из спеченного MoSi2 изготовляют лопатки газовых турбин, сопловые вкладыши двигателей; его используют как твердый смазочный материал для подшипников, для защитных покрытий тугоплавких металлов от высокотемпературного окисления.
Сульфиды. Из сульфидов нашел практическое применение только дисульфид молибдена (MoS2), имеющий высокие антифрикционные свойства. Его применяют в качестве сухого вакуумстой-кого смазочного материала. Рабочие температуры на воздухе от —150 до 435 °С, в вакууме до 1100 °С, в инертной среде до 1540 °С. Дисульфид молибдена электропроводен, немагнитен, стоек к радиации, воде, инертным маслам и кислотам, кроме крепких НС1, HNO3, и царской водке. При температуре выше 400 °С начинается процесс окисления с образованием оксидной пленки, а при 592 °С образуется МоО3, являющийся абразивом.
Свойства бескислородной керамики приведены в табл. 55.
Вопросы для самопроверки
1.Укажите особенности строения графита и его важнейшие свойства.
2.Как изменяется прочность графита от температуры?
3.Охарактеризуйте технический и пиролитический графиты, назовите области их применения.
4.Опишите неорганическое техническое стекло, назовите его состав, разновидности, свойства и применение. Какими способами повышают качество стекла?
5.Что такое ситаллы, укажите способы их получения, разновидности, свойства и применение?
6.Что представляет собой техническая керамика, ее разновидности?
7.Назовите представителей керамики на основе чистых оксидов. Дайте сравнительную оценку свойств.
8.Какие вы знаете виды бескислородной керамики? Назовите их разновидности, свойства и применение.
СПИСОК ЛИТЕРАТУРЫ
Горбаткина Ю. А. Адгезионная прочность в системах полимер—волокно. М.:
Химия, 1987. 192 с.
Зуев Ю. С, Дегтева Т. Г. Стойкость эластомеров в эксплуатационных условиях. М.: Химия, 1986. 264 с.
Каменев Е. И., Мясников Г. Д., Платонов М. П. Применение пластических масс: Справочник. Л.: Химия, 1985. 448 с.
Кирпичников П. А., Аверко-Антонович Л. А., Аверко-Антонович Ю. О. Химия и технология синтетического каучука. 3-е изд. Л.: Химия, 1987. 424 с.
Лахтин Ю. М., Леонтьева В. П. Материаловедение: Учебник. 2-е изд. М.: Машиностроение, 1980. 493 с.
Манин В. Н., Громов А. Н., Григорьев В. П. Дефектность и эксплуатационные свойства полимерных материалов. Л.: Химия, 1986. 184 с.
Материаловедение/Под общ. ред. Б. Н. Арзамасова. 2-е изд. М.: Машиностроение, 1986. 384 с.
Материалы для авиационного приборостроения и конструкций/Под ред. А. Ф. Белова. М.: Металлургия. 1982. 400 с. Сополимеры этилена/Е. В. Веселовская, Н. Н. Северова, Ф. И. Дунтов и др. Л.: Химия, 1983. 224 с.
Сычев М. М. Неорганические клеи. 2-е изд. Л.: Химия, 1986. 152 с. Тарнопольский Ю. М., Жигун И. Г., Поляков В. А. Пространственно-
армированные композиционные материалы: Справочник. М.: Машиностроение, 1987. 224 с.