Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Учеба / Контрольные и курсовая / задачи / экономич.анализ в сфере сервиса.doc
Скачиваний:
31
Добавлен:
15.02.2016
Размер:
243.2 Кб
Скачать

Санкт-петербургский государственный

УНИВЕРСИТЕТ СЕРВИСА И ЭКОНОМИКИ

КАФЕДРА:»УПРАВЛЕНИЕ ПРЕДПРИНИМАТЕЛЬСКОЙ ДЕЯТЕЛЬНОСТЬЮ»

КОНТРОЛЬНАЯ РАБОТА

ПО ДИСЦИПЛИНЕ:»ЭКОНОМИЧЕСКИЙ АНАЛИЗ ДЕЯТЕЛЬНОСТИ ПРЕДПРИЯТИЯ В СФЕРЕ СЕРВИСА»

Выполнила студентка

Специальности 080507

5курса

Щёкина А.Ю.

САНКТ - ПЕТЕРБУРГ

2011 г.

СОДЕРЖАНИЕ

1.Задание№1…………………………………………………………..3

2.Задание№2…………………………………………………………..12

3.Задание№3…………………………………………………………..13

4.Задание№4…………………………………………………………..16

5.Задание№5…………………………………………………………..18

Список используемой литературы……………………………….26

Вариант№2

Задание 1

  1. Изложить теоретические аспекты способа парной корреляции

  2. Привести числовой пример

1) Способ парной корреляции. Метод корреляционного и регрессионного (стохастического) анализа широко используется для определения тесноты связи между показателями, не находящимися в функциональной зависимости, т.е. связь, проявляется не в каждом отдельном случае, а в определенной зависимости. С помощью парной корреляции решаются две главные задачи: оставляется модель действующих факторов (уравнение регрессии); дается количественная оценка тесноты связей (коэффициент корреляции).

Простейшим приемом выявления связи между двумя признаками является построение корреляционной таблицы:

   \    Y      \ X    \

Y1

Y2

  ...  

Yz

Итого

Yi

X1

f11

12

...

f1z

X1

f21

22

...

f2z

...

...

...

...

...

...

...

Xr

fk1

k2

...

fkz

Итого

...

n

...

-

В основу группировки положены два изучаемых во взаимосвязи признака – Х и У. Частоты fij показывают количество соответствующих сочетаний Х и У. Если fij расположены в таблице беспорядочно, можно говорить об отсутствии связи между переменными. В случае образования какого-либо характерного сочетания fij допустимо утверждать о связи между Х и У. При этом, если fij концентрируется около одной из двух диагоналей, имеет место прямая или обратная линейная связь.

Наглядным изображением корреляционной таблице служит корреляционное поле. Оно представляет собой график, где на оси абсцисс откладывают значения Х, по оси ординат – У, а точками показывается сочетание Х и У. По расположению точек, их концентрации в определенном направлении можно судить о наличии связи.

В итогах корреляционной таблицы по строкам и столбцам приводятся два распределения – одно по X, другое по У. Рассчитаем для каждого Хi среднее значение У, т.е.  , как

Последовательность точек (Xi ) дает график, который иллюстрирует зависимость среднего значения результативного признака У от факторного X, – эмпирическую линию регрессии, наглядно показывающую, как изменяется У по мере изменения X.

По существу, и корреляционная таблица, и корреляционное поле, и эмпирическая линия регрессии предварительно уже характеризуют взаимосвязь, когда выбраны факторный и результативный признаки и требуется сформулировать предположения о форме и направленности связи. В то же время количественная оценка тесноты связи требует дополнительных расчетов.

Практически для количественной оценки тесноты связи широко используют линейный коэффициент корреляции. Иногда его называют просто коэффициентом корреляции. Если заданы значения переменных Х и У, то он вычисляется по формуле

Можно использовать и другие формулы, но результат должен быть одинаковым для всех вариантов расчета.

Коэффициент корреляции принимает значения в интервале от -1 до + 1. Принято считать, что если  |r| < 0,30, то связь слабая; при  |r| = (0,3÷0,7) – средняя; при  |r| > 0,70 – сильная, или тесная. Когда  |r| = 1 – связь функциональная. Если же r принимает значение около 0, то это дает основание говорить об отсутствии линейной связи между У и X. Однако в этом случае возможно нелинейное взаимодействие. что требует дополнительной проверки и других измерителей, рассматриваемых ниже.

Для характеристики влияния изменений Х на вариацию У служат методы регрессионного анализа. В случае парной линейной зависимости строится регрессионная модель

где n  число наблюдений; а0, а1 – неизвестные параметры уравнения;  ei – ошибка случайной переменной У.

Уравнение регрессии записывается как

где Уiтеор – рассчитанное выравненное значение результативного признака после подстановки в уравнение X.

Параметры а0 и а1 оцениваются с помощью процедур, наибольшее распространение из которых получил метод наименьших квадратов. Его суть заключается в том, что наилучшие оценки ag и а, получают, когда

т.е. сумма квадратов отклонений эмпирических значений зависимой переменной от вычисленных по уравнению регрессии должна быть минимальной. Сумма квадратов отклонений является функцией параметров а0 и а1. Ее минимизация осуществляется решением системы уравнений

Можно воспользоваться и другими формулами, вытекающими из метода наименьших квадратов, например:

Аппарат линейной регрессии достаточно хорошо разработан и, как правило, имеется в наборе стандартных программ оценки взаимосвязи для ЭВМ. Важен смысл параметров: а1 – это коэффициент регрессии, характеризующий влияние, которое оказывает изменение Х на У. Он показывает, на сколько единиц в среднем изменится У при изменении Х на одну единицу. Если а, больше 0. то наблюдается положительная связь. Если а имеет отрицательное значение, то увеличение Х на единицу влечет за собой уменьшение У в среднем на а1. Параметр а1 обладает размерностью отношения У к X.

Параметр a0 – это постоянная величина в уравнении регрессии. На наш взгляд, экономического смысла он не имеет, но в ряде случаев его интерпретируют как начальное значение У.

Например, по данным о стоимости оборудования Х и производительности труда У методом наименьших квадратов получено уравнение

У = -12,14 + 2,08Х.

Коэффициент а, означает, что увеличение стоимости оборудования на 1 млн руб. ведет в среднем к росту производительности труда на 2.08 тыс. руб.

Значение функции У = a0 + а1Х называется расчетным значением и на графике образует теоретическую линию регрессии.

Смысл теоретической регрессии в том, что это оценка среднего значения переменной У для заданного значения X.

Парная корреляция или парная регрессия могут рассматриваться как частный случай отражения связи некоторой зависимой переменной, с одной стороны, и одной из множества независимых переменных – с другой. Когда же требуется охарактеризовать связь всего указанного множества независимых переменных с результативным признаком, говорят о множественной корреляции или множественной регрессии.

2) Числовой пример.

Наибольшим спросом в торговых точках города, реализующих молочную продукцию, пользуется молоко "Лето", выпускаемое в пакетах объемом 1 литр . Цены за единицу этого товара в разных торговых точках города варьирют.

Известно, что реализация этого продукта вносит существенный вклад в общую выручку торговых точек. Возможно, она влияет и на величину прибыли предприятий торговли. Так ли это - позволит установить анализ.

  1. По данным, касающимся цен на упаковку молока "Лето" и объемов реализации в 15 торговых точках города, построим уравнение регрессионной зависимости между этими факторами.

  2. Методом регрессионного анализа определим, есть ли связь между величиной чистой прибыли предприятий торговли и объемами реализации ими молока "Лето", если для всех 15 анализируемых точек известны величины прибыли за II квартал 1999 г ., а также цены и объемы реализации данной марки молока (табл. 2.5).

Таблица 2.5

Показатели деятельности торговых предприятий,

реализующих молоко "Лето", за II квартал 1999 г .

Показатель

Торговые точки

1-я

2-я

3-я

4-я

5-я

6-я

7-я

Цена за 1л, руб.

х

12

12.1

12.5

12.6

12.2

12.2

12.5

Реализация, тыс.л

y

12.8

12.11

11.02

10.31

11.52

12.8

12.08

Прибыль, тыс. руб.

z

81

48

56

6

25

121

67

Показатель

Торговые точки

8-я

9-я

10-я

11-я

12-я

13-я

14-я

15-я

Цена за 1л, руб.

х

12,3

12,5

12,1

12,5

12,3

12,2

12

12,2

Реализация, тыс.л

y

11,48

11,27

13,31

10,78

11,16

12,04

13,21

11,8

Прибыль, тыс. руб.

z

12

8

54

70

18

26

50

98

Анализ будем проводить с помощью табличного процессора MS Excel. Описательная статистика для представленных данных отражена в табл. 2.6.

Таблица 2.6

Описательная статистика реализации молока "Лето" торговыми точками

Показатель

Среднее

СКО

Вариация

Асимметрия

Эксцесс

Цена за 1л, руб.

х

12,28

0,20

0,02

0,191

-1,264

Реализация, тыс.л

y

11,85

0,89

0,08

0,167

-0,785

Прибыль, тыс. руб.

z

49

34

0,69

0,550

-0,309

1. Анализ следует начать с проверки однородности совокупности данных. Критерием однородности является условие:

Var < 0,33.

Видим, что это условие выполняется лишь для рядов данных, относящихся к ценам (факторx ) и объемам реализации (фактор у) молока.

Проверка нормальности распределений этих факторов показывает:

|As|x = 0.191 < ,|As| y = 0.167 < ,

|Ex|x = 1.264 < ,|Ex| y = 0.785 <

Условия нормальности выполняются, следовательно, по двум этим рядам данных можно строить регрессионную зависимость.

Следующим шагом при построении регрессионной модели будет определение результативного и факторного признаков. Исходя из сути поставленной задачи, можно сказать, что в данном случае независимым фактором является цена за литр, объем реализации - признак зависимый (результатный).

Регрессионная зависимость между факторами х и у (зависимость объема реализации молока от его цены) будет иметь вид:

Y = 57.6 – 3.7 x

Полученный результат - обратно пропорциональная зависимость между факторами - вполне согласуется со здравым смыслом: очевидно, что чем выше цена, тем менее привлекательна торговая точка для покупателей данного товара.

Регрессионная зависимость позволяет строить прогноз величины результативного фактора при известной величине зависимого (т.е. прогноз объема реализации от цены за литр молока).

Подставив, например, х = 12,40 руб. за литр в аналитическую формулу зависимости, получим ожидаемое значение объема реализации за квартал - y = 11,72 тыс. литров.

2. Определить, связан ли объем прибыли, полученной предприятиями торговли, с объемами реализации ими одного вида продукции, можно с помощью корреляционного анализа. Матрица корреляций, рассчитанная с помощью компьютера, выглядит так:

Цена за 1л

Реализация

Прибыль

Цена за 1л

1

Реализация

-0.82055

1

Прибыль

-0.31643

0.487876

1

Величины коэффициентов парной корреляции факторов таковы:

rxy = -0.82, rxx = -0.32, ryx =0.49

Эти величины свидетельствуют о том, что между ценой товара (х) и объемом его реализации(у) связь весьма тесная (величина 0,82 говорит о том, что 82% вариации фактора у объясняются вариацией фактора х). Прибыль предприятия от цены на этот товар зависит слабо (коэффициент корреляции равен -0,32), а вот связь величины прибыли и объемов реализации молока "Лето" оказалась средней силы ( r yz = 0,49), причем зависимость прямо пропорциональная.

Следовательно, увеличение объемов реализации этого товара в среднем довольно заметно влияет на рост прибыли предприятий торговли. По результатам анализа руководству магазинов следует подумать о мерах по стимулированию продажи молока этой марки.