
- •П.А. Киселев, с.Б. Бокуть курс лекций по коллоидной химии
- •1. Коллоидная химия
- •1.1. Классификация коллоидных систем
- •1.2.Свойства коллоидных растворов
- •1.3. Методы приготовления коллоидных растворов
- •1.4. Оптические свойства и методы исследования коллоидных растворов
- •1.5.Рассеяние света (опалесценция)
- •1.6.Нефелометрия
- •1.7. Абсорбция (поглощение) света коллоидами и окраска коллоидных растворов
- •2. Молекулярно-кинетические свойства коллоидных растворов
- •2.1. Броуновское движение
- •2.2. Кинетическая устойчивость дисперсионных систем и седиментационное равновесие
- •2.3. Осмотическое давление
- •2.4. Равновесие Гиббса-Доннана
- •2.5. Электрические свойства коллоидных растворов. Электроосмос и электрофорез
- •2.6. Строение коллоидных частиц
- •3. Устойчивость дисперсных систем
- •3.1. Основные положения
- •3.2. Коагуляция гидрофобных коллоидов
- •3.3.Адсорбционно-сольватный барьер как фактор стабилизации коллоидных систем
- •3.4. Электрокинетический потенциал
- •3.5.Обратимость коагуляции. Пептизация
- •3.6. Студни и гели
- •4. Свойства растворов высокомолекулярных соединений
- •4.1. Набухание и растворение вмс
- •4.2. Термодинамические свойства растворов вмс
- •4.3. Вязкость растворов вмс
- •4.4. Растворы полимерных электролитов. Изоэлектрическая точка
- •5. Характеристика некоторых широко применяемых дисперсных систем
- •5.1. Общая характеристика эмульсий
- •5.2. Устойчивость эмульсий
- •5.3. Разрушение и обращение эмульсий
- •5.4. Пены
- •5.5. Суспензии
- •5.6. Аэрозоли
- •6. Характеристика некоторых спектральных методов исследования растворов вмс
- •6.1. Абсорбционная спектроскопия
- •6.2. Факторы, влияющие на абсорбционные свойства хромофора
- •6.3. Инфракрасная спектроскопия
- •6.4. Спектроскопия комбинационного рассеяния
- •6.5. Флуоресцентная спектроскопия
- •6.6. Изучение белков путем измерения их собственной флуоресценции
- •6.7. Поляризация флуоресценции
- •Содержание
1.5.Рассеяние света (опалесценция)
Свет рассеивается микрогетерогенными системами в том случае, если размер частиц rменьше длины световой волны, а расстояние между частицами больше световой волны. При размере частицыrсветовая волна огибает частицы; происходит дифракционное рассеяние. Если размер частицы значительно больше длины световой волны, происходит отражение света.
В. Рэлей развил теорию рассеяния света дисперсными системами, в которых частицы не поглощают свет и имеют сферическую форму. В полученной формуле он связал световую энергию, рассеянную единицей объема дисперсной системы, с концентрацией частиц и их объемом V, длиной световой волныи показателями преломления дисперсной фазыn1и дисперсной средыn2.
Эта формула имеет вид:
, (1.1)
где I0иI– интенсивность падающего света и света, рассеянного единицей объема дисперсной системы;с– весовая концентрация дисперсной фазы;– плотность дисперсной фазы.
Из этой формулы следует, что рассеяние света тем больше, чем больше отличается показатель преломления дисперсной фазы n1от показателя преломления дисперсионной среды, чем больше концентрация дисперсной фазы и чем больше объем частичек. Рассеяние света очень резко зависит от длины световой волны: чем меньше длина волны, тем больше рассеяние света.
Поскольку рассеяние более коротких волн голубой части спектра происходит интенсивнее, то коллоидный раствор в проходящем свете имеет красноватую окраску, а в боковом – голубоватую.
Уравнение Рэлея справедливо для монодисперсных разбавленных коллоидных растворов при размерах частиц дисперсной фазы r0.1, т.е.r40-70 нм (длина волны видимой части спектра 400‑700 нм).
Более общая теория рассеяния света и соответствующие формулы, справедливые для дисперсных систем всех степеней дисперсности, были предложены Г. Ми. Он учел, что при больших размерах частиц (r> 0,1) наряду с электрическими возникают и магнитные поля, это осложняет картину рассеяния света системой и делает ее очень чувствительной к отношениюr/. Максимум рассеяния, согласно теории Ми, наблюдается для систем с размером частиц от 1/4 до 1/3. Теория Ми охватывает также системы с частицами, проводящими электрический ток, для которых формула Рэлея непригодна. По этой теории интенсивность светорассеяния проходит для проводящих частиц через максимум, положение которого зависит в основном от длины световой волны.
Известно, что если луч света проходит через большую толщу среды, светорассеяние заметно себя проявляет. Так, луч солнечного света, проходящий через большую толщу атмосферы, рассеивается, что и определяет освещенность неба и его голубой цвет, связанный с преимущественным рассеянием коротковолновой голубой части спектра. Когда солнце находится в зените, «белый» луч относительно мало обедняется лучами голубой части спектра, и поэтому мы не замечаем слегка красноватого оттенка прямых солнечных лучей. На кате солнца лучи света проходят через слой атмосферы, больший в несколько десятков раз. Поэтому «белый» луч заметно обедняется голубой частью спектра и приобретает красную окраску.
1.6.Нефелометрия
Явление опалесценции лежит в основе прибора – нефелометра, с помощью которого определяют концентрацию и среднюю величину коллоидных частиц. Для конкретных дисперсной фазы и дисперсионной среды при использовании определенного источника освещения величины n1,n2,исохраняют постоянное значение. Поэтому уравнение Рэлея принимает вид:
I=kcVI0,(1.2)
где
k.
При нефелометрическом исследовании в два одинаковых сосуда наливают одинаковые коллоидные растворы различной концентрации. Одна из концентраций известна. Оба сосуда освещаются одним источником света. Интенсивность рассеянного света сравнивается для обоих растворов. С помощью специальных затворов изменяют высоты освещенной части растворов h1иh2. Если объем коллоидных частиц в обоих растворах одинаков, тоk` =kV=const. При одинаковой освещенности
I1=I2=k`c1I01=k`c2I02, (1.3)
где I01 иI02– сила света, падающего на сосуды с разной концентрацией исследуемых коллоидов с1и с2. Преобразуя (1.3), получим:
с1
= с2, (1.4)
где h1иh2– высота освещенной части сосудов.
Очевидно,
что
,
так как интенсивность падающего света
пропорциональна освещенной части
сосуда.
Для характеристики коллоидных частиц используется также оптическая и электронная микроскопия.
Разрешающая способность оптического микроскопа 160 нм, для электронного микроскопа – 0,3-0,5 нм.
Кроме того, широкое применение находят рентгенография и электронография.