
- •Глава I. Предмет и значение логики
- •§ 1. Мышление как предмет изучения логики
- •§ 2. Понятие о логической форме и логическом законе.
- •§ 3. Логика и язык
- •Глава II понятие
- •§ 1. Понятие как форма мышления
- •§ 2. Содержание и объем понятия
- •§ 3. Виды понятий
- •§ 4. Отношения между понятиями
- •§ 5. Определение понятий
- •§ 6. Деление понятий. Классификация
- •§ 7. Ограничение и обобщение понятий
- •§ 8. Операции с классами (объемами понятий)
- •Глава III суждение
- •§ 1. Общая характеристика суждения
- •§ 2. Простое суждение
- •§ 3. Сложное суждение и его виды
- •§ 4. Выражение логических связок (логических постоянных) в естественном языке
- •§ 5. Отношения между суждениями по значениям истинности
- •§ 6. Деление суждений по модальности
- •Глава IV основные законы (принципы) правильного мышления
- •§ 1. Понятие о логическом законе
- •§ 2. Законы логики и их материалистическое понимание
- •§ 3. Использование формально-логических законов в обучении
- •Глава V умозаключение
- •§ 1. Общее понятие об умозаключении
- •§ 2. Дедуктивные умозаключения
- •§ 3. Выводы из категорических суждений посредством их преобразования
- •§ 4. Простой категорический силлогизм1
- •I. Правила терминов
- •§ 5. Сокращенный категорический силлогизм (энтимема)
- •§ 6. Сложные и сложносокращенные силлогизмы (полисиллогизмы, сориты, эпихейрема)
- •§ 7. Условные умозаключения
- •§ 8. Разделительные умозаключения
- •§ 9. Условно-разделительные (лемматические) умозаключения
- •§ 10. Непрямые (косвенные) выводы
- •§ 11. Индуктивные умозаключения и их виды
- •§ 12. Виды неполной индукции
- •I вид. Индукция через простое перечисление (популярная индукция)
- •II вид. Индукция через анализ и отбор фактов
- •III вид. Научная индукция
- •§ 13. Индуктивные методы установления причинных связей
- •§ 14. Дедукция и индукция в учебном процессе
- •§ 15. Умозаключение по аналогии и его виды. Использование аналогий в процессе обучения
- •Глава VI логические основы теории аргументации
- •§ 1. Понятие доказательства
- •§ 2. Прямое и непрямое (косвенное) доказательство
- •§ 3. Понятие опровержения
- •I. Опровержение тезиса (прямое и косвенное)
- •II. Критика аргументов
- •III. Выявление несостоятельности демонстрации
- •§ 4. Правила доказательного рассуждения.
- •II. Правила по отношению к аргументам
- •III. Правила к форме обоснования тезиса (демонстрации) и ошибки в форме доказательства
- •§ 5. Понятие о софизмах и логических парадоксах
- •§ 6. Доказательство и дискуссия
- •Глава VII гипотеза
- •§ 1. Гипотеза как форма развития знаний
- •§ 2. Построение гипотезы и этапы ее развития
- •§ 3. Способы подтверждения гипотез
- •§ 4. Опровержение гипотез
- •§ 5. Примеры гипотез, применяющихся на уроках в школе
- •Глава VIII роль логики в процессе обучения
- •§ 1. Логическая структура вопроса
- •§ 2. К. Д. Ушинский и в. А. Сухомлинский о роли логики в процессе обучения
- •§ 3. Развитие логического мышления младших школьников
- •§ 4. Развитие логического мышления учащихся в средних и старших классах на уроках литературы, математики, истории и других предметов
- •Глава IX этапы развития логики как науки и основные направления современной символической логики
- •§ 1. Краткие сведения из истории классической и неклассической логик
- •§ 2. Развитие логики в связи с проблемой обоснования математики
- •§ 3. Многозначные логики
- •§ 4. Интуиционистская логика
- •§ 5. Конструктивные логики
- •§ 6. Модальные логики
- •§ 7. Положительные логики
- •§ 8. Паранепротиворечивая логика
§ 6. Модальные логики
В классической двузначной логике рассматривались простые и сложные ассерторические суждения, т. е. такие, в которых не установлен характер связи между субъектом и предикатом. Например: «Морская вода — соленая» или «Дождь то начинал хлестать теплыми крупными каплями, то переставал».В модальных суждениях раскрывается характер связи между субъектом и предикатом или между отдельными простыми суждениями в сложном модальном суждении. Например: «Необходимо соблюдать правила уличного движения» или «Если будет дуть попутный ветер, то, возможно, мы приплывем в гавань до наступления темноты».
Модальными являются суждения, которые включают модальные операторы (модальные понятия), т. е. слова «необходимо», «возможно», «невозможно», «случайно», «запрещено», «хорошо» и многие другие (см. гл. Ш, § 6 «Деление суждений по модальности»). Модальные суждения рассматриваются в специальном направлении современной формальной логики — в модальной логике.
Изучение модальных суждений имеет длительную и многогранную историю. Мы отметим лишь некоторые из ее аспектов. Модальности в логику были введены Аристотелем. Термин «возможность», по Аристотелю, имеет различный смысл. Возможным он называет и то, что необходимо, и то, что не необходимо, и то, что возможно. Исходя из понимания модальности «возможность», Аристотель писал о неприменимости закона исключенного третьего к будущим единичным событиям.
Наряду с категорическим силлогизмом Аристотель исследует и модальный силлогизм, у которого одна или обе посылки и заключение являются модальными суждениями. Я. Лукасевич в книге «Аристотелевская силлогистика с точки зрения современной формальной логики» две главы посвящает аристотелевой модальной логике предложений и модальной силлогистике Аристотеля40. Аристотель рассматривает модальную силлогистику по образцу своей ассерторической силлогистики: силлогизмы подразделяются на фигуры и модусы, неправильные модусы отбрасываются с помощью их интерпретации на конкретных терминах.
Согласно Аристотелю, случайность есть то, что не необходимо и не невозможно, т. е. р — случайно означает то же самое, что и р — не необходимо и р — не невозможно, но Лукасевич отмечает, что аристотелевская теория случайных силлогизмов полна серьезных ошибок41. Итог Лукасевича такой: пропозициональная модальная логика Аристотеля имеет огромное значение для философии; в работах Аристотеля можно найти все элементы, необходимые для построения полной системы модальной логики; однако Аристотель исходил из двузначной логики42, в то время как модальная логика не может быть двузначной. К идее многозначной логики Аристотель подошел вплотную, рассуждая о «будущем морском сражении». Следуя Аристотелю, Лукасевич в 1920 г. построил первую многозначную (трехзначную) логику. Так осуществляется связь модальных и многозначных логик.
Значительное внимание разработке модальных категорий уделяли философы в Древней Греции и особенно Диодор Крон, рассматривавший модальности в связи с введенной им временной переменной. В средние века модальным категориям также уделялось большое внимание. В XIX в. категорию вероятности разрабатывали Дж. Буль и П. С. Порецкий.
Возникновение модальной логики как системы датируется 1918 годом, когда американский логик и философ Кларенс Ирвинг Льюис (1888—1964) в работе «A Survey of Symbolic Logic» сформулировал модальное исчисление, названное им впоследствии 53.
В книге «Symbolic logic», написанной им совместно с К. Лэнгфордом в 1932 г., он сформулировал еще пять модальных логических систем, связанных с 53 и между собой. Это системы 51, S2, 54, 55, S6.
Приведем описание модальной системы SI43
I.
Исходные символы. 1) р,
q,
r
и
т. д. — пропозициональные переменные;
2) ~
р
—
отрицание р;
3)—
конъюнкцияр
и
q;
4)
—
строгая импликация льюисовской системы;
5)
—
модальный
оператор возможности (возможно р);
6) p
=q—
строгая эквивалентность, p
=q
равносильно
П. Аксиомы системы S1:
1) 2) 3) 4) 5) 6) 7)
Аксиома 5 может быть выведена из остальных, как было показано позднее. Так как конъюнкция связывает «сильнее», чем импликация, то скобки можно опустить или заменить их точками, как это сделано у Льюиса.
III. Правила вывода S1.
1. Правило подстановки. Любые два эквивалентных друг другу выражения взаимозаменимы.
2. Любая правильно построенная формула может быть подставлена вместо р, или q, или r и т. д. в любом выражении.
3.
Если
выводимо р
и
выводимо q,
то
выводимо
4.
Если
выводимо р
и
выводимото
выводимоq.
Льюис построил модальную пропозициональную логику S1 в виде расширения немодального (ассерторического) пропозиционального исчисления (сокращенно АПИ). При этом основные черты 51 и других его исчислений были скопированы с формализованной логической системы Principia Mathematica Рассела и Уайтхеда, сформулированы с помощью понятий, только терминологически отличающихся от понятий, использованных в Principia Mathematica. Кроме Рассела и Уайтхеда идеи классической логики развивали многие современные математические логики, например американский логик и математик С. Клини44. Исчисления Льюиса построены аксиоматически по образцу Principia, по аналогии с Principia Льюис доказывает рад специфических теорем.
В
классической двузначной логике логическое
следование отождествляется с
материальной импликацией, допускаются
такие формы вывода: 1)т.
е. истинное суждение следует из любого
суждения («истина следует откуда угодно»)
и 2)
т.
е. из ложного суждения следует любое
суждение («из лжи следует все, что
угодно»). Это противоречит нашему
содержательному, практическому пониманию
логического следования, поэтому
данные формулы, а также и некоторые
другие, и соответствующие им принципы
логического следования называются
парадоксами материальной импликации.
Льюис
создал свои новые системы с целью
избежать этих парадоксов и ввести новую
импликацию, названную им «строгой
импликацией», такую, чтобы логическое
следование представлялось не чисто
формально, а по смыслу (содержательно)
и новая импликация была бы ближе к союзу
естественного языка «если, то». В строгой
импликации Льюисаневозможно
утверждать антецедент, т. е.р,
и
отрицать консеквент, т. е. q45.
В
системах Льюиса были устранены парадоксы
материальной импликации, т. е. формулы
1) и 2) стали невыводимыми, но появились
парадоксы строгой импликации. К ним
относятся, например, такие формулы:
3)4)
Итак,
отождествлять строгую импликацию Льюиса
со следованием нельзя.
С
целью исключить парадоксы строгой
импликации Льюиса немецкий математик
и логик Ф. В. Аккерман (1896—1962) построил
свою систему модальной логики. Он ввел
так называемую сильную импликацию,
которая не тождественна строгой
импликации Льюиса, и модальные
операторы Аккермана и Льюиса также не
являются тождественными. Аккерман все
логические термины и модальные операторы
определяет через сильную импликацию
так: NA
равносильно
МА
равносильно
ЗдесьА
—
любая правильно построенная формула
системы Аккермана: N
—
оператор необходимости; М
—
оператор возможности;
—
отрицаниеА;
знак
обозначает
сильную импликацию. Знак
—
логическая постоянная, обозначающая
«абсурдно». Эта постоянная в свою очередь
определяется так:
где & обозначает конъюнкцию. И последняя
формула читается так: из противоречия,
т. е.А
и
не-А,
следует
абсурд. В системе Аккермана не выводятся
формулы, структурно подобные парадоксам,
ни материальной импликации, ни строгой
импликации.
Системы Льюиса и Аккермана являются бесконечнозначными. В отличие от этих систем первоначально построенные системы Лукасевича являются конечнозначными: одна — трехзначная (1920), другая — четырехзначная (1953). В четырехзначной системе Лукасевича46 также обнаружены парадоксы. Главный из них состоит в том, что ни одно аподиктическое предложение не истинно, т. е. ни одно суждение вида Lot (где L обозначает необходимость, а α — любая формула) не является истинным. Это означало бы, что необходимых суждений нет, т. е. модальный оператор «необходимо» упраздняется. Лукасевич пишет: «Любое аподиктическое предложение должно быть отброшено»47. Сам Лукасевич считает это достоинствοм своей системы, а понятие «необходимость» — псевдопонятием. С такой точкой зрения, конечно, согласиться нельзя.
Интерпретации модальных логик различны. Известный австрийский философ и логик Р. Карнап (1891—1970) пытался интерпретировать модальные понятия (операторы) с помощью так называемой теории «возможных миров», в которой допускается наличие множества «миров», один из которых — действительный, реальный мир, а остальные — возможные миры. Необходимым объявляется то, что существует во всех мирах, возможным — то, что существует хотя бы в одном.
Р. Карнап в 1946 г., используя понятие «описание состояния», предложил интерпретацию модальных операторов, в основе которой лежала идея различия возможного и действительного миров.
В ином направлении шел финский логик Я. Хинтикка. Критически переосмыслив введенное Карнапом понятие «описание состояния», он разрабатывал технику «модальных множеств», т. е. миров (1957), — оригинальную семантическую концепцию возможных миров. Разработка семантики возможных миров для модальных логик продолжается.
Разнообразными проблемами модальной логики занимается американский логик Р. Фейс48.
В настоящее время разработаны многие виды модальностей (см. табл. 7).
Теорией модальных логик и построением новых модальных логических систем в нашей стране активно занимаются логики А. А. Ивин49, Я. А. Слинин50, О. Ф. Серебряников, В. Т. Павлов и др.