
- •Глава I. Предмет и значение логики
- •§ 1. Мышление как предмет изучения логики
- •§ 2. Понятие о логической форме и логическом законе.
- •§ 3. Логика и язык
- •Глава II понятие
- •§ 1. Понятие как форма мышления
- •§ 2. Содержание и объем понятия
- •§ 3. Виды понятий
- •§ 4. Отношения между понятиями
- •§ 5. Определение понятий
- •§ 6. Деление понятий. Классификация
- •§ 7. Ограничение и обобщение понятий
- •§ 8. Операции с классами (объемами понятий)
- •Глава III суждение
- •§ 1. Общая характеристика суждения
- •§ 2. Простое суждение
- •§ 3. Сложное суждение и его виды
- •§ 4. Выражение логических связок (логических постоянных) в естественном языке
- •§ 5. Отношения между суждениями по значениям истинности
- •§ 6. Деление суждений по модальности
- •Глава IV основные законы (принципы) правильного мышления
- •§ 1. Понятие о логическом законе
- •§ 2. Законы логики и их материалистическое понимание
- •§ 3. Использование формально-логических законов в обучении
- •Глава V умозаключение
- •§ 1. Общее понятие об умозаключении
- •§ 2. Дедуктивные умозаключения
- •§ 3. Выводы из категорических суждений посредством их преобразования
- •§ 4. Простой категорический силлогизм1
- •I. Правила терминов
- •§ 5. Сокращенный категорический силлогизм (энтимема)
- •§ 6. Сложные и сложносокращенные силлогизмы (полисиллогизмы, сориты, эпихейрема)
- •§ 7. Условные умозаключения
- •§ 8. Разделительные умозаключения
- •§ 9. Условно-разделительные (лемматические) умозаключения
- •§ 10. Непрямые (косвенные) выводы
- •§ 11. Индуктивные умозаключения и их виды
- •§ 12. Виды неполной индукции
- •I вид. Индукция через простое перечисление (популярная индукция)
- •II вид. Индукция через анализ и отбор фактов
- •III вид. Научная индукция
- •§ 13. Индуктивные методы установления причинных связей
- •§ 14. Дедукция и индукция в учебном процессе
- •§ 15. Умозаключение по аналогии и его виды. Использование аналогий в процессе обучения
- •Глава VI логические основы теории аргументации
- •§ 1. Понятие доказательства
- •§ 2. Прямое и непрямое (косвенное) доказательство
- •§ 3. Понятие опровержения
- •I. Опровержение тезиса (прямое и косвенное)
- •II. Критика аргументов
- •III. Выявление несостоятельности демонстрации
- •§ 4. Правила доказательного рассуждения.
- •II. Правила по отношению к аргументам
- •III. Правила к форме обоснования тезиса (демонстрации) и ошибки в форме доказательства
- •§ 5. Понятие о софизмах и логических парадоксах
- •§ 6. Доказательство и дискуссия
- •Глава VII гипотеза
- •§ 1. Гипотеза как форма развития знаний
- •§ 2. Построение гипотезы и этапы ее развития
- •§ 3. Способы подтверждения гипотез
- •§ 4. Опровержение гипотез
- •§ 5. Примеры гипотез, применяющихся на уроках в школе
- •Глава VIII роль логики в процессе обучения
- •§ 1. Логическая структура вопроса
- •§ 2. К. Д. Ушинский и в. А. Сухомлинский о роли логики в процессе обучения
- •§ 3. Развитие логического мышления младших школьников
- •§ 4. Развитие логического мышления учащихся в средних и старших классах на уроках литературы, математики, истории и других предметов
- •Глава IX этапы развития логики как науки и основные направления современной символической логики
- •§ 1. Краткие сведения из истории классической и неклассической логик
- •§ 2. Развитие логики в связи с проблемой обоснования математики
- •§ 3. Многозначные логики
- •§ 4. Интуиционистская логика
- •§ 5. Конструктивные логики
- •§ 6. Модальные логики
- •§ 7. Положительные логики
- •§ 8. Паранепротиворечивая логика
Глава V умозаключение
§ 1. Общее понятие об умозаключении
Формами мышления являются понятия, суждения и умозаключения. Опосредованно, с помощью многообразных видов умозаключений, мы можем получать новые знания. Построить умозаключение можно при наличии одного или нескольких истинных суждений (называемых посылками), поставленных во взаимную связь. Возьмем пример умозаключения:
Все углерода горючи. Алмаз — углерод.
Алмаз горюч.
Структура всякого умозаключения включает посылки, заключение и логическую связь между посылками и заключением. Логический переход от посылок к заключению называется выводом. В приведенном примере два первых суждения, стоящих над чертой, являются посылками; суждение: «Алмаз горюч» является заключением. Для того чтобы проверить истинность заключения «Алмаз горюч», вовсе не нужно обращаться к непосредственному опыту, т. е. сжигать алмаз. Заключение о горючести алмаза с полной достоверностью можно получить с помощью умозаключения, опираясь на истинность посылок и соблюдение правил вывода.
Умозаключение — форма мышления, в которой из одного или нескольких суждений на основании определенных правил вывода получается новое суждение, с необходимостью или определенной степенью вероятности следующее из них.
Процесс получения заключений из посылок по правилам дедуктивных умозаключений называется выведением следствий.
Понятие логического следования
Выведение следствий из данных посылок — широко распространенная логическая операция. Как известно, условиями истинности заключения являются истинность посылок и логическая правильность вывода. Иногда, в ходе доказательства от противного, в рассуждении допускаются заведомо ложные посылки (так называемый антитезис при косвенном доказательстве) или принимаются посылки недоказанные, однако в дальнейшем эти посылки обязательно подлежат исключению.
Человек, не изучавший логику, делает эти выводы, не применяя сознательно фигур и правил умозаключения. Формальная логика знакомит с правилами различных видов умозаключений. Математическая логика дает формальный аппарат, с помощью которого в определенных частях логики можно выводить следствия из данных посылок. Используя этот аппарат, мы можем, имея некоторые данные, получить из них новые сведения, непосредственно не очевидные, но заключенные в этой информации, можем выводить логические следствия, вытекающие из данной информации.
Логическое следствие из данных посылок есть высказывание, которое не может быть ложным, когда эти посылки истинны.
Иными словами, некоторое выражение В есть логическое следствие из формулы А (где А и В — обозначения для различных по форме высказываний), если, заменив те конкретные элементарные высказывания, которые входят в А и В, переменными, мы получим тождественно-истинное выражение (А -> В), или закон логики.
Возьмем такой пример. Нам даны три посылки: 1) «Если Иван — брат Марьи или Иван — сын Марьи, то Иван и Марья — родственники»; 2) «Иван и Марья — родственники»; 3) «Иван — не сын Марьи». Можно ли из них вывести логическое следствие, что «Иван — брат Марьи»? Многим сначала кажется, что такое логическое заключение из данных трех посылок будет истинным. Чтобы проверить это, следует составить формулу этого умозаключения. Обозначим суждение «Иван — брат Марьи» буквой (переменной) а, суждение «Иван — сын Марьи» — буквой b и суждение «Иван и Марья — родственники» — буквой с.
Запишем
нашу задачу символами (над чертой
записаны три данные посылки, под чертой
— предполагаемое заключение):
Объединив
три посылки в конъюнкцию «л» и присоединив
к ним посредством знака « -> »
предполагаемое заключение а,
получим
формулу:
Нам нужно проверить, является ли данная формула, в которой а, b, с трактуются теперь как переменные, законом логики. Составим для этой формулы таблицу (табл. 8).
Таблица 8
В последней колонке формула в одном случае принимает значение «ложь», значит, она не является законом логики. Следовательно, из данных трех посылок не следует с необходимостью заключения, что «Иван — брат Марьи». Иван может быть племянником Марьи, или отцом Марьи, или дядей Марьи, или каким-либо другим ее родственником.
Этот пример показывает, что эффективность средств математической логики видна тогда, когда средствами традиционной формальной логики трудно установить, вытекает ли какое-либо следствие из данных посылок или нет, особенно в случае, когда мы имеем дело с большим числом посылок (но не имеем еще дела с формулами, содержащими кванторы).
Умозаключения делятся на дедуктивные, индуктивные и умозаключения по аналогии.
В определении дедукции в логике выявляются два подхода. 1. В традиционной (не в математической) логике дедукцией называют умозаключение от знания большей степени общности к новому знанию меньшей степени общности. Впервые теория дедукции в этом плане была обстоятельно разработана Аристотелем. 2. В современной математической логике дедукцией называют умозаключение, дающее достоверное (истинное) суждение. Четкая фиксация существенного различия классического и современного понимания дедукции особенно важна для решения методологических вопросов. Для различения двух смыслов дедукции можно классическое понимание обозначить термином «дедук-ция1» (сокращенно Д1), а современное — «дедукция2» (Д2). Правильно построенному дедуктивному умозаключению присущ необходимый характер логического следования заключения из данных посылок.