
- •Вопросы к экзамену по аналитической химии
- •I. Химия и медицина
- •1. Предмет, цели и задачи аналитической химии. Краткий исторический очерк развития аналитической химии. Место аналитической химии среди естественных наук и в системе медицинского образования.
- •II. Качественный анализ
- •2. Основные понятия аналитической химии. Типы аналитических реакций и реагентов. Требования, предъявляемые к анализу, чувствительности, селективности определения состава веществ.
- •3. Физико-химические и физические методы анализа. Макро-, полумикро-, микро- и ультрамикроанализ. Характеристика чувствительности аналитических реакций.
- •4. Аналитическая классификация катионов. Систематический и дробный анализ.
- •Общая характеристика группы
- •6. Систематический анализ смеси катионов I аналитической группы.
- •7. Применение закона действующих масс в аналитической химии. Основные положения теории слабых электролитов Аррениуса. Константа диссоциации, степень диссоциации. Закон разведения Оствальда.
- •Основные положения электролитической теории с. Аррениуса
- •Теория слабых электролитов
- •8. Основные положения теории сильных электролитов Дебая-Гюккеля. Ионная сила раствора. Активность и коэффициент активности.
- •9. Уравнения, применяемые к неидеальным (реальным) растворам. Термодинамическая константа ионизации.
- •Общая характеристика группы
- •12. Систематический анализ смеси катионов II аналитической группы.5
- •13. Протолитическая теория кислот и оснований. Понятие кислоты и основания. Амфолиты.
- •14. Кислотно-основное равновесие. Типы протолитических реакций.
- •15. Кислотные и основные свойства растворителей. Влияние природы растворителя на силу кислот и оснований. Константа кислотности и основности. Нивелирующее и дифференцирующее действие растворителей.
- •16. Диссоциация воды. Ионное произведение воды. Водородный показатель рН как количественная мера активной кислотности и щёлочности. Кислотно-основные индикаторы. Измерения рН растворов (см. 17).
- •19. Теория кислот и оснований Льюиса. Мягкие и жёсткие кислоты и основания.
- •Общая характеристика группы
- •21. Систематический анализ смеси катионов III аналитической группы.
- •22. Систематический анализ смеси катионов I-III аналитических групп.
- •25. Систематический анализ смеси катионов IV аналитической группы.
- •26. Гетерогенные процессы. Равновесие между жидкой и твердой фазами. Константа гетерогенных равновесий – константа растворимости (термодинамическая, реальная, условная).
- •28. Схема образования осадка. Свойства кристаллических и аморфных осадков. Влияние различных факторов на структуру и дисперсность осадков. Способы получения чистых осадков.
- •Реакции катионов железа (III)
- •Реакции катионов железа (II)
- •30. Систематический анализ смеси катионов V аналитической группы
- •31. Комплексные соединения, их строение и классификация. Хелатные и внутрикомплексные соединения.
- •Номенклатура комплексных соединений
- •Название некоторых комплексообразователей
- •32. Металлолигандное равновесие в водном растворе. Константа нестойкости и устойчивости комплексных соединений (полные, ступенчатые, координационные и истинные термодинамические).
- •33. Металлолигандный гомеостаз и способы его коррекции. Лигандообменные процессы в организме в норме и при патологии. Применение комплексных соединений в медицине.
- •34. VI аналитическая группа катионов. Общая характеристика катионов этой группы. Характерные и специфические реакции катионов.
- •Все осадки растворимы в минеральных кислотах, аммиаке и солях аммония
- •35. Систематический анализ смеси катионов VI аналитической группы.
- •36. Систематический анализ смеси катионов IV-VI аналитической группы.
- •Систематический ход анализа смеси катионов
- •Систематический ход анализа смеси катионов
- •IV аналитической группы
- •Систематический анализ смеси катионов VI аналитической группы
- •37. Аналитическая классификация анионов. Первая аналитическая группа анионов. Характерные и специфические реакции анионов so42ˉ, so32ˉ, co32ˉ, SiO32ˉ, s2o32ˉ, b4o72ˉ, po43ˉ.
- •Специфические реакции анионов I аналитической группы
- •Реакции тиосульфат-иона (s2o32‾)
- •38. Вторая аналитическая группа анионов. Характерные и специфические реакции анионов Clˉ, Brˉ, iˉ, scn ˉ, s2ˉ.
- •Реакции хлорид-иона (Cl‾)
- •Реакции иодид-иона (I‾)
- •Реакции роданид-иона (cns‾)
- •39. Третья аналитическая группа анионов. Характерные и специфические реакции анионов no3ˉ, no2ˉ, ch3cooˉ.
- •Реакция нитрат-иона (no3‾)
- •Реакции нитрит-иона (no2‾)
- •Реакции ацетат-иона (ch3coo‾)
- •III. Количественный анализ
- •40. Задачи и методы количественного анализа. Классификация методов количественного анализа. Сущность титриметрических методов анализа.
- •41. Способы выражения состава растворов: массовая доля, молярная концентрация, молярная концентрация эквивалента, моляльная концентрация, молярная доля, объёмная доля, титр.
- •42. Закон эквивалентов и его применение в количественном анализе. Способы определения точки эквивалентности. Способы приготовления рабочих растворов. Способы титрования: прямое, обратное, косвенное.
- •Классификация методов анализа по типу реакции
- •Классификация методов анализа по способу титрования
- •43. Сущность метода кислотно-основного титрования. Основные реакции и титранты метода. Ацидиметрия, алкалиметрия. Кислотно-основные индикаторы.
- •Титрование сильной кислоты сильной щелочью:
- •Титрование слабого основания сильной кислотой:
- •Титрование слабой кислоты сильной щелочью:
- •Кислотно-основные индикаторы
- •Кислотно-основные индикаторы
- •44. Кривые кислотно-основного титрования. Расчет, построение и анализ типичных кривых кислотно-основного титрования.
- •45. Окислительно-восстановительные реакции, применяемые в объёмном анализе. Сущность методов оксидиметрии. Классификация редокс-методов, способы установления точки эквивалентности в оксидиметрии.
- •Общая характеристика и классификации методов оксидиметрии
- •46. Метод перманганатометрии, его сущность.Условия проведения перманганатометрического титрования. Титрант, его приготовление и стандартизация. Определение солей железа (II) в растворах.
- •48. Иодометрическое определение меди в растворах. Применение иодометрии в медицине. Определение солей меди (II) в растворах.
- •49. Теоретические основы комплексонометрического титрования. Условия проведения комплексонометрического определения содержания металлов в растворе. Комплексоны, их особенности.
- •Классификация физико-химических методов
- •52. Спектрофотометрический метод. Его сущность. Основные законы светопоглощения – законы Бугера-Ламберта и Бера.
- •Классификация методов оптического анализа
- •55. Потенциометрический метод. Теоретические основы метода, классификация
- •Типы электродов, применяемых в потенциометрии:
- •Потенциометрическое определение рH растворов
- •57. Полярографический метод. Сущность полярографии. Индикаторные электроды и электроды сравнения. Диффузионный ток. Качественный и количественный полярографический анализ.
- •58. Хроматографические методы анализа. Ионообменная, газовая и жидкостная хроматография.
- •Классификация хроматографических методов
- •59. Экстракция. Сущность метода. Закон распределения. Константа экстракции. Коэффициент распределения.
- •60. Важнейшие растворители и реагенты, используемые в экстракции. Хелатные соединения в экстракции. Скорость экстракции. Примеры разделения биологических объёктов методом экстракции.
41. Способы выражения состава растворов: массовая доля, молярная концентрация, молярная концентрация эквивалента, моляльная концентрация, молярная доля, объёмная доля, титр.
Молярная концентрация равна количеству вещества (в молях), содержащегося в одном литре раствора. Она обозначается СМ и рассчитывается как отношение химического количества растворенного вещества (моль) Х к объему V раствора в литрах:
где m (Х) – масса растворенного вещества, г
М (Х) – молярная масса, г/моль
V – объем раствора, л.
Если объем V раствора измеряют в миллилитрах, то формула для расчета молярной концентрации имеет вид:
Молярная концентрация эквивалента (нормальность или нормальная концентрация) равна количеству вещества эквивалента (моль), содержащегося в одном литре раствора. Она обозначается Сн рассчитывается как отношение химического количества эквивалента растворенного вещества Х к объему раствора в литрах:
или, выразив в знаменателе молярную массу эквивалента через молярную массу вещества и фактор эквивалентности его в реакции по уравнению, получим:
В современных методах анализа широко используется разновидность массовой концентрации – титр.
Титр равен массе вещества (г), содержащейся в 1 мл раствора. Титр обозначается Т (Х) и рассчитывается, как отношение массы вещества Х к объему раствора V (мл):
Можно установить связь между молярной концентрацией и титром:
Взаимосвязь
молярной концентрацией раствора и его
массовой долей описывается уравнением: ,
где ρ – плотность раствора, г/мл;
w (Х) – массовая доля растворенного вещества, %
Удобно использовать формулу, связывающую между собой молярную и нормальную концентрации:
В тех случаях, когда речь идет об отношении массы (или объема, или химического количества вещества) компонента к массе (или объему, или количеству вещества) всей системы, термин "концентрация" не употребляют. А говорят о «доле» – массовой, объемной или молярной. И выражают эту долю либо дробью, либо в процентах, принимая систему за 1 или за 100%.
Для обозначения доли компонента приняты следующие греческие буквы: массовая доля – ω (омега), объемная доля – φ (фи), молярная доля – χ (хи).
где m (Х) и m – массы компонента и масса всей системы
V (Х) и V – объемы компонента и объем всей системы
ν (Х) и Σ ν – количества вещества компонента и сумма всех количеств веществ всей системы.
Моляльность раствора – равна количеству вещества (моль) растворенного в 1 кг растворителя. Она обозначается Сm и рассчитывается по формуле:
42. Закон эквивалентов и его применение в количественном анализе. Способы определения точки эквивалентности. Способы приготовления рабочих растворов. Способы титрования: прямое, обратное, косвенное.
Химическим эквивалентом называется некая реальная или условная частица, которая может присоединять или высвобождать один ион водорода в кислотно-основных реакциях или один электрон в окислительно-восстановительных реакциях.
Важнейшей характеристикой химического эквивалента является молярная масса эквивалента вещества, выраженная в г/моль.
Молярная масса эквивалента вещества (г/моль) – это масса 1 моль эквивалента вещества, рассчитываемая по формуле:
,
где fэ − фактор эквивалентности, определяемый из уравнения химической реакции.
Фактор эквивалентности fэ(Х) – число, показывающее, какая доля реальной частицы вещества Х эквивалентна одному иону водорода в данной кислотно-основной реакции или одному электрону в окислительно-восстановительной реакции.
Фактор эквивалентности рассчитывается по уравнению:
,
где Z
– суммарный заряд обменивающихся ионов
для кислотно-основных реакций или число
принятых или отданных электронов для
окислительно-восстановительных реакций.
Закон эквивалентов: вещества взаимодействуют друг с другом и образуются в результате химических реакций в количествах, пропорциональных их эквивалентам.
Для условной химической реакции аА + bВ → сС + dD:
νЭ (A) = νЭ (B) = νЭ (C) = νЭ (D),
где νЭ – химическое количество эквивалента вещества, моль
νЭ
=
=>
Титрование – это процесс постепенного добавления титранта к анализируемой пробе, продолжающийся до точки эквивалентности.
Точка эквивалентности (момент эквивалентности) – это момент, когда количество вещества эквивалента в добавленном растворе титранта становится равным количеству анализируемого вещества.
Титрант – это раствор точно известной концентрации, применяемый для титрования.
Существует два способа приготовления титрантов:
1. Взвешенную на аналитических весах точную навеску вещества растворяют в мерной колбе и доводят объем раствора водой до метки. Зная массу растворенного вещества (m) и объем полученного раствора (V), можно вычислить его титр: Т = m/V.
Титранты, приготовленные таким образом, называются стандартными растворами и для их получения применимы только те вещества, которые удовлетворяют следующим требованиям:
а) вещество должно быть химически чистым, т.е. должно содержать посторонних примесей не более 0,05-0,1%;
б) состав вещества должен строго соответствовать формуле;
в) вещество должно быть устойчивым при хранении и в твердом виде и в растворе;
2. Если вещества не удовлетворяют этим требованиям, то сначала готовят раствор приблизительно нужной концентрации, а затем устанавливают его точную концентрацию, титруя стандартным раствором. Такие титранты называются стандартизированными или рабочими растворами.
Разнообразные методы титриметрического анализа можно классифицировать по типу используемых реакций и по способу проведения анализа.