
- •Метаболизм пуриновых и пиримидиновых нуклеотидов Гидролиз полинуклеотидов
- •Катаболизм пуриновых нуклеотидов
- •От нуклеотидов к основаниям.
- •От оснований к мочевой кислоте
- •Катаболизм пиримидиновых нуклеотидов
- •Продукты распада нуклеотидов могут повторно использоваться (реутилизацироваться)
- •De novo синтез пуриновых и пиримидиновых рибонуклеотидов
- •De Novo синтез пуриновых нуклеотидов.
- •Регуляция синтеза пуриновых нуклеотидов de novo
- •Cинтез пиримидиновых нуклеотидов de novo
- •Рибонуклеотидредуктаза и биосинтез дезоксирибонуклеотидов
- •Биосинтез тимидиловых дезоксирибонуклеотидов
- •Обмен дезоксиуридиловых нуклеотидов
- •Наиболее частые проявления нарушений обмена пуринов - гиперурикемия и подагра
- •Нарушение обмена пиримидиновых нуклеотидов также приводит к болезням.
- •Введение в строение генома человека
- •От предположений до проекта «Геном человека»
- •Уже многое известно о строении генома человека
- •Уникальность человека не связана прямо с числом уникальных последовательностей.
- •Число повторяющихся элементов в геноме человека беспрецедентно для любого другого известного генома
- •Умеренно повторяющиеся последовательности способны перемещаться по геному
- •Мобильные элементы оказывают существенное влияние на функции генома
- •Среди повторяющихся последовательностей обнаружены семейства генов
- •Однонуклеотидный полиморфизм- основа индивидуальности человека.
- •Биосинтез днк – один из важнейших процессов передачи генетической информации последующим поколениям и ее хранения.
- •Для перемещения днк-полимеразы молекулу матрицы следует «раскрутить»
- •Ретровирусы внесли изменения в центральную догму молекулярной билогии.
- •Биосинтез днк у эукариот связан с циклом деления клетки.
- •Выход из состояния пролиферативного покоя требует специальных регуляторов.
- •У эукариот свой набор днк полимераз
- •Теломеры – «молекулярные часы клетки»
- •Генетический материал может изменяться и перестраиваться
- •Точечные мутации – результат влияния внешней среды на геном.
- •Некоторые перестройки генетического материала могут быть восстановлены.
- •Димеры пиримидинов в днк удаляются двумя механизмами.
- •Транскрипция – первый шаг на пути экспрессии генетической информации в клетке.
- •Механизм синтеза рнк во многом напоминает синтез днк
- •Транскриптон (оперон) - единица транскрипции.
- •Промоторы имеют сходное строение
- •У эукариот – 3 рнк- полимеразы
- •В транскрипции у прокариот важная роль принадлежит -фактору
- •У эукариот молекула рнк модифицируется после транскрипции.
- •Кэпирование и полиаденилирование иРнКопределяют дальнейшие особенности функций иРнк
- •Сплайсинг – способ создания многообразия белков
- •Процессинг продуктов рнк-полимераз I и III не похож на процессинг иРнк
От нуклеотидов к основаниям.
Гуаниновые нуклеотиды гидролизуются с образованием гуанозина, который подвергается фосфоролизу до гуанина и рибоза 1-Ф. Гуанин дезаминируется гуанин дезаминазой с образованием ксантина. Аденозин также можно получить по такому пути, однако внутриклеточные нуклеотидазы у человека не очень активны по отношению к AMФ. АМФ чаще дезаминируется ферментом аденилат (AMФ) дезаминазой с образованием ИМФ. Последний далее гидролизуется нуклеотидазой с образованием инозина и после фосфоролиза превращается в гипоксантин.
Некоторое
количество аденозина образуется изS-аденозилметионина в
процессах переметилирования. Аденозин
дезаминируется до инозина аденозин
дезаминазой. Недостаточность аденозин
дезаминазы или пуриновой нуклеозид
фосфорилазы ведет к двум различным
болезням иммунодефицита механизмами,
которые до конца не раскрыты.
Рис 8-10. Основные пути катаболизма нуклеотидов
При недостаточности аденозин дезаминазы, страдают TиB-лимфоциты, а при недостаточности фосфорилазы нарушается функцияTклеток, аBклетки остаются нормальными. В сентябре 1990 г была успешно применена генинженерная технология для лечения 4-летней девочки с недостаточностью аденозин дезаминазы.
Катаболизм метилированных (минорных) пуринов зависит от расположения метильной группы. Если метильная группа связана с группой -NH2, она удаляется вместе с -NH2, и оставшаяся часть обменивается в дальнейшем обычным способом. Если метил связан с атомом азота гетероцикла, соединение выделяется в неизменном виде с мочой.
От оснований к мочевой кислоте
И адениновые и гуаниловые нуклеотиды превращаются в одно общее промежуточное соединение ксантин. Гипоксантин, возникающий из аденина, окисляется в ксантин ксантиноксидазой . Гуанин дезаминируется с образованием аммиака и ксантина. Образующийся аммиак переносится к печени в составе глутамина, где используется для синтеза мочевины.
Ксантин, подобно гипоксантину, окисляется кислородом и ксантиноксидазой в мочевую кислоту с образованием перекиси водорода. У человека, мочевая кислота выделяется, а перекись водорода разрушается каталазой. Высокая активность ксантиноксидазы обнаруживается только в клетках печени и кишечника.
Рис
8.11Основные
пути катаболизма пиримидиновых азотистых
оснований
Катаболизм пиримидиновых нуклеотидов
В отличие от пуринов, кольцевая структура пиримидинов разрушается с образованием обычных конечных продуктов катаболизма - -аминокислот, аммиака и двуокиси углерода. В катаболизме пиримидиновых нуклеотидов принимают участие нуклеотидазы и пиримидиновые нуклеотид фосфорилазы, которые превращают мононуклеотиды в свобоные основания. Аминогруппы цитозина и 5-метилцитозина отделяется в форме аммиака..
Дециклизация. Свободные пиримидиновые основания восстанавливаются НАДФН+Н+. АтомыN2 иC3 пиримидинового кольца выделяются в форме аммиака и двуокиси углерода соответственно. Оставшаяся часть кольца представляет собой-аминокислоту .-аминоизомасляная кислота образуется из тимина или 5-метилцитозина и в основном затем выделяется почками. Незначительная часть ее после переаминирования может превращаться в сукцинил-КоА и использоваться в цикле трикарбоновых кислот. Из цитозина и урацила образуется-аланин, который может быть использован для синтеза биологически активных дипептидов карнозина (гис--ала) или ансерина (метил гис--ала) в мозге и мышцах.