
- •Глава 5. Химия и обмен углеводов Классификация и роль углеводов в организме
- •Nb! Моносахариды могут связываться друг с другом
- •Nb! Углеводы – не только источники энергии
- •Nb! Переваривание углеводов начинается в ротовой полости
- •Nb! в клетки разных органов глюкоза проникает различными механизмами
- •Nb! Глюкоза запасается в клетках в форме гликогена
- •Nb! Гликогенолиз – процесс распада гликогена
- •Восстановительный путь обмена глюкозы
- •Nb! в анаэробных условиях конечным акцептором водорода может быть ацетальдегид (спиртовое брожение глюкозы)
- •Nb! Глюконеогенез – механизм синтеза глюкозы
- •Nb! Гликолиз и глюконеогенез – взаимосвязанные процессы
- •Nb! в аэробных условиях пвк окончательно окисляется Цепь реакций аэробного распада глюкозы можно разделить на три основных этапа.
- •Окислительное декарбоксилирование пирувата
- •Цикл Кребса – центральный путь обмена веществ
- •Nb! Функции цикла трикарбоновых кислот многообразны
- •Nb! Скорость реакция цикла Кребса определяется энергетическими потребностями клетки
- •Nb! Пентозофосфатный путь окисления глюкозыобслуживает восстановительные синтезы в клетке.
- •Глюкуроновый путь обмена глюкозы
- •Nb! Фруктоза и галактоза превращаются в глюкозу
- •Обмен галактозы.
- •Гликогеновые болезни
- •Регуляция углеводного обмена
Цикл Кребса – центральный путь обмена веществ
Этот метаболический путь назван именем открывшего его автора – Г.Кребса, получившего (совместно с Ф. Липманом) за данное открытие в 1953 г. Нобелевскую премию. В цикле лимонной кислоты улавливается большая часть свободной энергии, образующейся при распаде белков, жиров и углеводов пищи. Цикл Кребса – центральный путь обмена веществ.
Образовавшийся в результате окислительного декарбоксилирования пирувата ацетил-КоА в матриксе митохондрий включается в цепь последовательных реакций окисления. Таких реакций восемь.
1-я реакция – образование лимонной кислоты. Образование цитрата происходит путем конденсации ацетильного остатка ацетил-КоА с оксалацетатом (ОА) при помощи фермента цитратсинтазы (с участием воды):
Данная реакция практически необратима, поскольку при этом распадается богатая энергией тиоэфирная связь ацетил~S-КоА.
2-я реакция – образование изолимонной кислоты.Эта реакция катализируется железосодержащим (Fe– негеминовое) ферментом – аконитазой. Реакция протекает через стадию образованияцис-аконитовой кислоты (лимонная кислота подвергается дегидратации с образованиемцис-аконитовой кислоты, которая, присоединяя молекулу воды, превращается в изолимонную).
3-я реакция – дегидрирование и прямое декарбоксилирование изолимонной кислоты. Реакция катализируется НАД+–зависимым ферментом изоцитратдегидрогеназой. Фермент нуждается в присутствии ионов марганца (или магния). Являясь по своей природе аллостерическим белком, изоцитратдегидрогеназа нуждается в специфическом активаторе – АДФ.
4-я реакция – окислительное декарбоксилирование α-кетоглутаровой кислоты. Процесс катализируется α-кетоглутаратдегидрогеназой – ферментным комплексом, по структуре и механизму действия похожим на пируватдегидрогеназный комплекс. В его состав входят те же коферменты: ТПФ, ЛК и ФАД – собственные коферменты комплекса; КоА-SHи НАД+ – внешние коферменты.
5-я реакция – субстратное фосфорилирование. Суть реакции заключается в переносе богатой энергией связи сукцинил-КоА (макроэргическое соединение) на ГДФ с участием фосфорной кислоты – при этом образуется ГТФ, молекула которого вступает в реакциюперефосфорилированияс АДФ – образуется АТФ.
6-я реакция – дегидрирование янтарной кислоты сукцинатдегидрогеназой. Фермент осуществляет прямой перенос водорода с субстрата (сукцината) на убихинон внутренней мембраны митохондрий. Сукцинатдегидрогеназа -IIкомплекс дыхательной цепи митохондрий. Коферментом в этой реакции является ФАД.
7-я реакция – образование яблочной кислоты ферментом фумаразой. Фумараза (фумаратгидратаза) гидратирует фумаровую кислоту – при этом образуется яблочная кислота, причем ееL-форма, так как фермент обладает стереоспецифичностью.
8-я реакция – образование оксалацетата. Реакция катализируетсямалатдегидрогеназой, коферментом которой служит НАД+. Образовавшийся под действием фермента оксалацетат вновь включается в цикл Кребса и весь циклический процесс повторяется.
Последние три реакции обратимы, но поскольку НАДН∙Н+захватывается дыхательной цепью, равновесие реакции сдвигается вправо, т.е. в сторону образования оксалацетата. Как видно, за один оборот цикла происходит полное окисление, “сгорание”, молекулы ацетил-КоА. В ходе цикла образуются восстановленные формы никотинамидных и флавиновых коферментов, которые окисляются в дыхательной цепи митохондрий. Таким образом, цикл Кребса находится в тесной взаимосвязи с процессом клеточного дыхания.