Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
физика / Тепловое излучение. Теория к лаб. 6.1.doc
Скачиваний:
160
Добавлен:
13.02.2016
Размер:
468.48 Кб
Скачать

Вопрос 5. Формула Планка.

Выход из создавшейся ситуации нашел немецкий физик М. Планк.

В 1900 г. он впервые выдвинул гипотезу о дискретных значениях энергии осциллятора.

Согласно этой гипотезе энергия осциллятора с собственной частотой ν может принимать лишь определенные дискретные (квантованные) значения, отличающиеся на целое число элементарных порций − квантов энергии: εν = , где h= 6,625·10-34 Дж·спостоянная Планка (квант действия). Тогда полная энергия осциллятора будет равна целому числу квантов

, (). (16.17)

Согласно этой гипотезе Планк моделировал реальное твердое тело с помощью системы квантовых осцилляторов. Выполнив усреднение энергии осциллятора с помощью распределения Больцмана, Планк получил выражение для среднего значения энергии, приходящейся на одну колебательную степень свободы осциллятора:

. (16.18)

Подставив соотношение (16.18) в формулу Рэлея – Джинса (16.14), Планк получил формулу для излучательной способности АЧТ как функцию от частоты излучения:

. (16.19)

Эта формула как функция от длины волны излучения имеет вид:

, (16.20)

именно ее чаще всего используют в экспериментальных работах.

Из формулы Планка вытекают все законы теплового излучения тел.

В области малых частот, т.е. при условии, что квант энергии во много раз меньше средней энергии осциллятора (h, формула Планка совпадает с формулой Релея—Джинса. Для доказательства этого разложим функцию eh в ряд:

eh=1+)+()+… (16.21)

и, ограничившись первыми двумя членами разложения, из (16.19) получаем формулу Релея—Джинса (16.14):

R(= .

В предельном случае больших частот (>>1) единицей в знаменателе формулы (16.19) можно пренебречь, тогда получим формулу

, (16.22)

которая совпадает с выражением (16.12), т.е. с формулой Вина, причем, функция F(ν/Т) представляет собой выражение

,

которое действительно зависит от отношения частоты к температуре. График функции Вина показан на рис. 16.5. Функции Вина совпадает с формулой Планка только в области больших частот.

Интегральную излучательную способность АЧТ (закон Стефана—Больцмана) можно получить, проинтегрировав выражение (16.20) по длинам волн в интервале от 0 до :

. (16.23)

Произведем замену переменной. Обозначим , тогда подстановкаиприводит выражение (16.21) к виду

, (16.24)

где . Так как, то

. (16.25)

Как видим, величина  (постоянная Стефана-Больцмана) выражается через постоянные величины c, h, k.

Анологично, исследуя функцию (16.22) по переменной ν на экстремум, можно получить значение постоянной Вина, которая выражается также через постоянные с, h и k, и выполнить проверку закона смещения Вина.

Таким образом, формула Планка не только хорошо согласуется с

экспериментальными данными, но и содержит в себе частные законы теплового излучения. Следовательно, формула Планка является полным решением основной задачи теплового излучения, поставленной Кирхгофом. Ее решение стало возможным лишь благодаря революционной квантовой гипотезе Планка.