
- •Тема 1. Упругие волны.
- •Вопрос 2. Уравнение плоской волны.
- •Вопрос 3. Принцип суперпозиции волн. Групповая скорость. Стоячие волны.
- •Вопрос 4. Эффект Доплера в акустике.
- •Вопрос 5. Ультразвук. Источники и приемники ультразвуковых волн. Применение ультразвука.
- •Тема 2. Электромагнитные колебания.
- •Вопрос 2. Свободные затухающие электромагнитные колебания. Дифференциальное уравнение свободных затухающих колебаний и его решение.
- •Вопрос 3. Вынужденные электромагнитные колебания. Дифференциальное уравнение вынужденных колебаний и его решение.
- •Вопрос 4. Резонанс напряжений и резонанс токов.
- •Тема 3. Основы теории максвелла для
- •Вопрос 2. Первое уравнение Максвелла в интегральной форме.
- •Вопрос 3. Ток смещения и второе уравнение Максвелла в интегральной форме.
- •Тема 4. Электромагнитные волны.
- •Вопрос 2. Плоская электромагнитная волна. Волновое уравнение для электромагнитного поля.
- •Вопрос 3. Энергия электромагнитных волн.
- •Вопрос 4. Давление электромагнитных волн.
- •Тема 5. Геометрическая оптика.
- •Вопрос 1. Основные законы геометрической оптики.
- •Вопрос 2. Фотометрические величины и их единицы.
- •Тема 6. Преломление света на сферических поверхностях. Тонкие линзы. Формула тонкой линзы и построение изображений предметов с помощью тонкой линзы.
- •3. Построение изображений предметов с помощью тонкой линзы.
- •Вопрос 1. Преломление и отражение света на сферических поверхностях.
- •Вопрос 2.Тонкие линзы. Формула тонкой линзы.
- •Вопрос 3. Построение изображений предметов с помощью тонкой линзы.
- •Тема 7. Световые волны.
- •Вопрос 2. Когерентные световые волны. Интерференция волн.
- •Вопрос 3. Методы наблюдения интерференции света.
- •Тема 8. Интерференция света при отражении от тонких пластинок.
- •Вопрос 1. Полосы равного наклона.
- •Вопрос 2. Полосы равной толщины.
- •Вопрос 3. Кольца Ньютона.
- •Вопрос 4. Применения явления интерференции. Просветление оптики. Интерферометры.
- •Тема 9. Дифракция света.
- •Вопрос 2. Принцип Гюйгенса-Френеля. Зоны Френеля.
- •Вопрос 3. Дифракция света на круглом экране и круглом отверстии.
- •Вопрос 4. Дифракция Фраунгофера на одной щели.
- •Тема 10. Дифракционная решетка,
- •Вопрос 2. Дифракционный спектр.
- •Вопрос 3. Дисперсия и разрешающая способность.
- •Вопрос 4. Дифракция рентгеновских лучей на кристаллической решетке.
- •Тема 11. Взаимодействие света с веществом.
- •Вопрос 2. Электронная теория дисперсии.
- •Вопрос 3. Поглощение света. Закон Бугера-Ламберта.
- •Тема 12. Поляризация света.
- •Вопрос 1. Естественный и поляризованный свет.
- •Вопрос 2. Поляризаторы. Степень поляризации. Закон Малюса.
- •Тема 13. Поляризация света при отражении и преломлении. Закон брюстера. Двойное лучепреломление. Анизотропия кристаллов.
- •Вопрос 1. Поляризация света при отражении и преломлении. Закон Брюстера.
- •Вопрос 2. Поляризация при двойном лучепреломлении. Анизотропия кристаллов.
- •Вопрос 3. Анализ поляризованного света.
- •Тема 14. Искусственное двойноелучепреломление.
- •Вопрос 2. Вращение плоскости поляризации.
- •Тема 15. Элементы специальной теории относительности
- •Вопрос 2. Постулаты специальной теории относительности.
- •Вопрос 3. Преобразования Лоренца.
- •Вопрос 4. Основные законы релятивистской динамики. Закон взаимосвязи массы и энергии.
- •Вопрос 5. Эффект Доплера для световых волн.
- •Вопрос 6. Границы применимости классической механики.
- •Тема 16. Квантовая оптика.
- •Вопрос 2. Энергетическая светимость. Излучательная, отражательная и поглощательная способность тела.
- •Вопрос 3. Абсолютно черное тело. Серое тело. Закон Кирхгофа.
- •Вопрос 4. Закон Стефана-Больцмана. Законы Вина.
- •Вопрос 5. Формула Планка.
- •Вопрос 6. Оптическая пирометрия.
- •Тема 17. Фотоэлектрический эффект.
- •Вопрос 2. Уравнение Эйнштейна для внешнего фотоэффекта Фотонная теория света. Масса, энергия и импульс фотона.
- •Вопрос 3. Однофотонный и многофотонный фотоэффект.
- •Вопрос 4. Внутренний фотоэффект.
- •Тема 18. Давление света. Эффект комптона.
- •Вопрос 2. Давление света
- •Вопрос 2. Эффект Комптона.
- •Вопрос 3. Тормозное и характеристическое рентгеновское излучение.
- •Тема 19. Атом водорода по резерфорду и бору
- •Вопрос 2. Классическая модель атома по Резерфорду.
- •Вопрос 3. Постулаты Бора и объяснение происхождения линейчатых спектров. Закономерности в атомных спектрах.
- •Вопрос 4. Теория атома водорода.
- •Вопрос 5. Виды спектров. Спектральный анализ.
- •Оптические спектры Спектры испускания
- •Полосатые спектры
- •Спектры поглощения
- •Тема 20. Гипотеза де бройля. Соотношения неопределенностей гейзенберга.
- •1. Гипотеза и формула де Бройля. Экспериментальное подтверждение гипотезы.
- •2. Соотношения неопределенностей Гейзенберга.
- •Вопрос 1. Гипотеза де Бройля и ее экспериментальное подтверждение.
- •Вопрос 2. Соотношения неопределенностей Гейзенберга.
- •Тема 21. Волноваяфункция. Уравнение шрёдингера.
- •Вопрос 2. Уравнение Шрёдингера.
- •Вопрос 3. Применение уравнения Шрёдингера к свободному электрону.
- •Вопрос 4. Частица в потенциальной яме. Квантование энергии.
- •Вопрос 5. Прохождение частицы сквозь потенциальный барьер.
- •Вопрос 6. Уравнение Шредингера для атома водорода. Векторная модель атома.
- •Тема 22. Строение атомного ядра.
- •Вопрос 2. Состав атомного ядра. Нуклоны и их взаимопревращаемость.
- •Вопрос 3. Энергия связи и устойчивость ядер.
- •Вопрос 4. Ядерные силы и их свойства.
- •Вопрос 5. Ядерные реакции
- •Тема 23. Явление радиоактивности
- •Вопрос 2. Взаимодействия радиоактивного излучения с веществом.
- •Вопрос 3. Закон радиоактивного распада. Период полураспада.
- •Вопрос 4. Единицы радиоактивности.
- •Вопрос 5. Биологическое действие ионизирующего излучения. Радиационная безопасность.
- •Тема 24. Физика лазеров.
- •Вопрос 2. Взаимодействие света с веществом.
- •Вопрос 3. Устройство лазера. Принцип действия лазера.
- •Вопрос 4. Типы лазеров.
- •Вопрос 5. Свойства и применения лазерного излучения.
Тема 24. Физика лазеров.
Вопросы:
1. Спонтанные и вынужденные переходы между энергетическими уровнями атома. Коэффициенты Эйнштейна.
2. Взаимодействие света с веществом.
3. Устройство лазера. Принцип действия лазера.
4. Типы лазеров.
5. Свойства и применения лазерного излучения.
Вопрос 1. Спонтанные и вынужденные переходы между энергетическими уровнями атома. Коэффициенты Эйнштейна.
Основываясь на представлениях Бора о квантовом характере механизма излучения света атомом, Эйнштейн в 1916 г. получил новый вывод формулы Планка, где ввел понятие индуцированного излучения – явления, на котором основан принцип действия лазера.
Состояние частицы или системы частиц в физике можно характеризовать энергией. Из квантовой механики известно, что связанная микрочастица или система микрочастиц может обладать дискретным спектром значений энергии E1, E2, E3,... Количество частиц, находящихся на некотором энергетическом уровне, называют населенностью этого уровня. Как отмечалось выше, состояние частицы с наименьшей энергией и соответствующий энергетический уровень E1 называют основным, а все остальные − возбужденными уровнями.
В реальных системах микрочастицы, находящиеся при абсолютной температуре Т > 0, вследствие обмена энергией с окружающей средой способны переходить с одного энергетического уровня на другой. Этот скачкообразный переход микрочастиц называется квантовым переходом.
При каждом значении температуры устанавливается динамическое равновесие, характеризуемое постоянным во времени распределением частиц по энергиям. При достаточно высоких температурах, например, для уровней с энергиями Е1 и Е2 частицы подчиняются закону распределения Максвелла-Больцмана:
,
, (24.1)
где п2 и n1– концентрации частиц соответственно на верхнем и нижнем уровнях, Е2 > Е1. Избыточная энергия при квантовом переходе с более высокого энергетического уровня на более низкий может передаваться окружающим микрочастицам (безызлучательный переход) или выделяться в виде квантов света. В последнем случае частота ν излучаемого света связана с разностью энергий начального и конечного состояний микрочастицы формулой: hν = E2 – E1. В дальнейшем мы не будем учитывать безызлучательные переходы, принимая во внимание лишь переходы с излучением фотонов.
Первоначально считалось, что между энергетическими уровнями атомов происходят два вида переходов: спонтанные и вынужденные.
Спонтанные квантовые переходы атомов с более высоких энергетических уровней на более низкие осуществляются самопроизвольно, то есть без непосредственного воздействия на атомы извне. Эти переходы приводят к спонтанному испусканию фотонов.
Вынужденные переходы атомов с более низких на более высокие уровни происходят в результате поглощения внешнего излучения веществом.
Эйнштейн пришел к выводу, что для объяснения равновесия между излучением и веществом этих двух процессов переходов недостаточно. В самом деле, вероятность спонтанных переходов определяется лишь внутренними свойствами атомов и поэтому не зависит от интенсивности падающего излучения, вероятность же вынужденных переходов с более низких уровней зависит как от свойств атомов, так и от интенсивности падающего излучения. Далее согласно Эйнштейну необходимо учитывать еще третий процесс − переход атомов сболее высоких энергетических уровней на более низкие под воздействием внешнего излучения, в результате которого атомы излучают энергию вынужденно.
Для простоты рассмотрим два энергетических уровня атомов среды, между которыми согласно Эйнштейну возможны три типа процессов: поглощение, спонтанное излучение и вынужденное (индуцированное) излучение (рис. 24.1).
Рис.
24.1
Если атом находится в основном состоянии 1 с энергией Е1, то под действием внешнего излучения может осуществиться вынужденный переход в возбужденное состояние 2 с энергией Е2, приводящий к поглощению излучения (рис. 24.1,а). Атомы, поглощая свет, переходят на энергетические уровни с большей энергией, причем в соответствии с законом сохранения энергии переход может быть вызван лишь светом определенной частоты. Такой процесс называют резонансным, а также вынужденным (индуцированным) поглощением света.
Атом, находясь в возбужденном состоянии 2, может через некоторый промежуток времени произвольно, без каких-либо внешних воздействий, перейти на более низкий энергетический уровень, отдавая избыточную энергию в виде электромагнитного излучения (испуская фотон с энергией h=E2-E1). Такие переходы называются спонтанными переходами, а излучение, сопровождающее такие переходы, − спонтанным излучением (рис. 24.1,б). Вследствие случайного характера спонтанных переходов свет, излучаемый микрочастицами, например, атомами, не согласован по фазе, по направлению распространения и поляризации. Следовательно, спонтанное излучение является некогерентным.
Из квантовой механики известно, что возбужденные состояния не являются стабильными. В любой момент микрочастица может с некоторой вероятностью перейти в более низкое возбужденное энергетическое состояние или же в основное, проведя в исходном возбужденном состоянии ограниченное время τ, называемое временем жизни микрочастицы в возбужденном состоянии. Для совокупности микрочастиц вводится понятие среднего времени жизни микрочастицы τср в возбужденном состоянии.
Из квантово-механического соотношения ΔE·Δt ≥ h (ΔE· τср ≥ h) следует, что энергия атома в возбужденном состоянии не является строго определенной, т.е. возбужденные энергетические уровни несколько «размыты», причем тем более, чем меньше среднее время жизни этих уровней. В связи с этим частота света, излучаемого при спонтанных квантовых переходах различных атомов, несколько различается, т.е. свет не является строго монохроматическим.
Спонтанное излучение характерно для большинства обычных нелазерных источников света, например, пламён, ламп накаливания, газоразрядных трубок, люминесцентных ламп и др.
Для установления равновесия при произвольной интенсивности падающего излучения необходимы переходы, вероятность которых возрастала бы с увеличением интенсивности излучения, т.е. переходы, связанные с испусканием фотонов под действием излучения. Эйнштейн показал, что помимо поглощения и спонтанного излучения должен существовать третий, качественно иной тип взаимодействия.
Если на атом, находящийся в возбужденном состоянии 2, действует внешнее излучение с частотой, удовлетворяющей условию h=E2-E1, то возникает вынужденный (индуцированный) переход в основное состояние 1 с излучением фотона той же энергии h = E2 - Е1 (рис. 24.1, в).
При подобном переходе происходит излучение атомом фотона дополнительно к тому фотону, под действием которого произошел переход. Возникающее в результате таких переходов излучение называется вынужденным (индуцированным) излучением. Это было весьма важное открытие, которое было реализовано лишь более чем через сорок лет.
Таким образом, в процесс вынужденного излучения вовлечены два фотона: первичный фотон, вызывающий испускание излучения возбужденным атомом, и вторичный фотон, испущенный атомом. Существенно, что вторичные фотоны неотличимы от первичных, являясь точной их копией.
Вероятность индуцированного испускания будет максимальна, если частота ν воздействующей волны совпадает с частотой перехода (2→1) между уровнями активной среды. При отклонении v от частоты перехода вероятность индуцированного испускания убывает.
В статистической физике известен принцип детального равновесия, согласно которому при термодинамическом равновесии каждому процессу можно сопоставить обратный процесс, причем скорость их протекания одинакова. А. Эйнштейн применил этот принцип и закон сохранения энергии для излучения и поглощения электромагнитных волн в случае черного тела.
Для объяснения процессов равновесия между веществом и излучением Эйнштейн показал, что вероятность поглощения фотона атомом зависит не только от состояния атома, но и от спектральной плотности падающего излучения. Вероятность спонтанных переходов зависит только от концентрации возбужденных атомов. Однако, для установления равновесия необходимо также существование переходов из возбужденных уровней на более низкие, вероятность которых зависит от спектральной плотности падающего излучения.
Динамическое равновесие осуществляется посредством постоянного обмена квантами между полем излучения и материальными телами, причем обмен квантами должен уравновешиваться для каждой частоты в отдельности. Поэтому рассмотрим лишь одну частоту. Для других частот все рассуждения будут аналогичными, меняются лишь уровни энергии атомов.
Установим количественные соотношения, связывающие населенности уровней энергии системы частиц, спектральную плотность энергии электромагнитного излучения, падающего на систему, вероятности спонтанного и вынужденного излучений и резонансного поглощения частиц системы.
Электромагнитное излучение в вакууме характеризуется полной объемной плотностью энергии излучения, состоящей из электрической и магнитной составляющих:
. (24.2)
Объемная плотность энергии излучения определенным образом распределена по спектру частот. Распределение энергии излучения по частотам описывается спектральной плотностью энергии излучения w(ν,T), равной отношению плотности энергии dw в интервале частот от ν до ν+ dν к частотному интервалу dν:
. (24.3)
Так как из формулы (24.3) следует соотношение dw = w(ν,T) dν, то для вычисления интегральной плотности энергии во всем частотном диапазоне следует проинтегрировать его по всем частотам, т.е.
. (24.4)
Эйнштейн применил к описанию процессов спонтанного и вынужденного излучения вероятностные методы.
Если
количество переходов атомов с верхнего
уровня на нижний спонтанно равно
,
вынужденно –
,
с нижнего уровня на верхний вынужденно
равно
,
то условие термодинамического равновесия
запишется в виде
.
(24.5)
Пусть
А21
– вероятность спонтанного перехода
()
в секунду,п2
и n1–
концентрации атомов соответственно на
верхнем и нижнем уровнях. Тогда
. (24.6)
Количество
вынужденных переходов пропорционально
спектральной плотности излучения.
Обозначим вероятности вынужденных
переходов в секунду (и
)
соответственно величинами
и
,
которые относятся к спектральной
плотности излучения
,
тогда
,
. (24.7)
С учетом (24.6) и (24.7) соотношение (24.5) примет вид:
. (24.8)
Подставляя (24.1) в (24.8) и сокращая полученное выражение на общий множитель п0, находим:
. (24.9)
Величины
А21,
В21,
В12
называются коэффициентами Эйнштейна.
Они являются характеристиками только
самого атома и могут зависеть лишь от
частоты
.
Для установления связи между коэффициентами
Эйнштейна исследуем асимптотическое
поведение выражения (24.9) при Т→∞. Из
физических соображений полагают, что
при
величинаw(ν,T)
→ ∞, поэтому
и слагаемымA21
в скобках можно пренебречь. Кроме того,
.
В результате равенство (24.9) примет вид:
.
После сокращения последнего равенства на w(ν,T) получаем первое соотношение между коэффициентами Эйнштейна:
. (24.10)
Физический смысл этого соотношения заключается в том, что при постоянной спектральной плотности энергии w(ν,T) вероятность индуцированного излучения кванта света атомом равна вероятности резонансного поглощения кванта света этим же атомом за одинаковые промежутки времени.
Для
вычисления спектральной плотности
энергии w(ν,T)
умножим соотношение (24.9) на множитель
.
После последующего преобразования и с
учетом (24.10) получим:
, (24.11)
где
.
Для определения отношения коэффициентов Эйнштейна А21/В21 используем формулу Рэлея – Джинса, хорошо описывающую поведение излучения в предельном случае hν << kT:
.
В
рассматриваемом предельном случае
выражение
разложим
в ряд Тейлора по степеням
,
ограничившись в разложении двумя первыми
слагаемыми:
,
тогда (24.11) запишется в виде:
. (24.12)
Формула Рэлея – Джинса для спектральной плотности излучения в случае малых частот имеет вид:
. (24.13)
Сравнивая выражения (24.11) и (24.13), находим второе соотношение между коэффициентами Эйнштейна:
. (24.14)
Формула (24.11) принимает вид:
(24.15)
и совпадает с формулой Планка для спектральной плотности излучения.
Хотя элементарная квантовая теория излучения абсолютно черного тела не позволяет теоретически вычислить значения коэффициентов Эйнштейна, она демонстрирует необходимость существования спонтанных и вынужденных переходов, причем, для вероятностей вынужденных переходов имеет место важное соотношение (24.10).
Кванты, испущенные в результате вынужденных переходов, коррелируют по своим свойствам с излучением, которое вызывает эти переходы. Вынужденное излучение обладает той же поляризацией, тем же направлением распространения и той же фазой, что и вынуждающее переход излучение. Это свойство вынужденного излучения чрезвычайно важно для различных его применений.
Были созданы когерентно излучающие источники, в которых различные атомы вещества излучают кванты света согласованно, т.е. с одинаковыми частотами, фазами, поляризацией и направлениями распространения. Они называются оптическими квантовыми генераторами или лазерами. Слово "лазер" образовалось из первых букв полного английского выражения "light amplification by stimulated emission of radiation", что в переводе означает: усиление света посредством стимулированного излучения.