
- •Тема 1. Упругие волны.
- •Вопрос 2. Уравнение плоской волны.
- •Вопрос 3. Принцип суперпозиции волн. Групповая скорость. Стоячие волны.
- •Вопрос 4. Эффект Доплера в акустике.
- •Вопрос 5. Ультразвук. Источники и приемники ультразвуковых волн. Применение ультразвука.
- •Тема 2. Электромагнитные колебания.
- •Вопрос 2. Свободные затухающие электромагнитные колебания. Дифференциальное уравнение свободных затухающих колебаний и его решение.
- •Вопрос 3. Вынужденные электромагнитные колебания. Дифференциальное уравнение вынужденных колебаний и его решение.
- •Вопрос 4. Резонанс напряжений и резонанс токов.
- •Тема 3. Основы теории максвелла для
- •Вопрос 2. Первое уравнение Максвелла в интегральной форме.
- •Вопрос 3. Ток смещения и второе уравнение Максвелла в интегральной форме.
- •Тема 4. Электромагнитные волны.
- •Вопрос 2. Плоская электромагнитная волна. Волновое уравнение для электромагнитного поля.
- •Вопрос 3. Энергия электромагнитных волн.
- •Вопрос 4. Давление электромагнитных волн.
- •Тема 5. Геометрическая оптика.
- •Вопрос 1. Основные законы геометрической оптики.
- •Вопрос 2. Фотометрические величины и их единицы.
- •Тема 6. Преломление света на сферических поверхностях. Тонкие линзы. Формула тонкой линзы и построение изображений предметов с помощью тонкой линзы.
- •3. Построение изображений предметов с помощью тонкой линзы.
- •Вопрос 1. Преломление и отражение света на сферических поверхностях.
- •Вопрос 2.Тонкие линзы. Формула тонкой линзы.
- •Вопрос 3. Построение изображений предметов с помощью тонкой линзы.
- •Тема 7. Световые волны.
- •Вопрос 2. Когерентные световые волны. Интерференция волн.
- •Вопрос 3. Методы наблюдения интерференции света.
- •Тема 8. Интерференция света при отражении от тонких пластинок.
- •Вопрос 1. Полосы равного наклона.
- •Вопрос 2. Полосы равной толщины.
- •Вопрос 3. Кольца Ньютона.
- •Вопрос 4. Применения явления интерференции. Просветление оптики. Интерферометры.
- •Тема 9. Дифракция света.
- •Вопрос 2. Принцип Гюйгенса-Френеля. Зоны Френеля.
- •Вопрос 3. Дифракция света на круглом экране и круглом отверстии.
- •Вопрос 4. Дифракция Фраунгофера на одной щели.
- •Тема 10. Дифракционная решетка,
- •Вопрос 2. Дифракционный спектр.
- •Вопрос 3. Дисперсия и разрешающая способность.
- •Вопрос 4. Дифракция рентгеновских лучей на кристаллической решетке.
- •Тема 11. Взаимодействие света с веществом.
- •Вопрос 2. Электронная теория дисперсии.
- •Вопрос 3. Поглощение света. Закон Бугера-Ламберта.
- •Тема 12. Поляризация света.
- •Вопрос 1. Естественный и поляризованный свет.
- •Вопрос 2. Поляризаторы. Степень поляризации. Закон Малюса.
- •Тема 13. Поляризация света при отражении и преломлении. Закон брюстера. Двойное лучепреломление. Анизотропия кристаллов.
- •Вопрос 1. Поляризация света при отражении и преломлении. Закон Брюстера.
- •Вопрос 2. Поляризация при двойном лучепреломлении. Анизотропия кристаллов.
- •Вопрос 3. Анализ поляризованного света.
- •Тема 14. Искусственное двойноелучепреломление.
- •Вопрос 2. Вращение плоскости поляризации.
- •Тема 15. Элементы специальной теории относительности
- •Вопрос 2. Постулаты специальной теории относительности.
- •Вопрос 3. Преобразования Лоренца.
- •Вопрос 4. Основные законы релятивистской динамики. Закон взаимосвязи массы и энергии.
- •Вопрос 5. Эффект Доплера для световых волн.
- •Вопрос 6. Границы применимости классической механики.
- •Тема 16. Квантовая оптика.
- •Вопрос 2. Энергетическая светимость. Излучательная, отражательная и поглощательная способность тела.
- •Вопрос 3. Абсолютно черное тело. Серое тело. Закон Кирхгофа.
- •Вопрос 4. Закон Стефана-Больцмана. Законы Вина.
- •Вопрос 5. Формула Планка.
- •Вопрос 6. Оптическая пирометрия.
- •Тема 17. Фотоэлектрический эффект.
- •Вопрос 2. Уравнение Эйнштейна для внешнего фотоэффекта Фотонная теория света. Масса, энергия и импульс фотона.
- •Вопрос 3. Однофотонный и многофотонный фотоэффект.
- •Вопрос 4. Внутренний фотоэффект.
- •Тема 18. Давление света. Эффект комптона.
- •Вопрос 2. Давление света
- •Вопрос 2. Эффект Комптона.
- •Вопрос 3. Тормозное и характеристическое рентгеновское излучение.
- •Тема 19. Атом водорода по резерфорду и бору
- •Вопрос 2. Классическая модель атома по Резерфорду.
- •Вопрос 3. Постулаты Бора и объяснение происхождения линейчатых спектров. Закономерности в атомных спектрах.
- •Вопрос 4. Теория атома водорода.
- •Вопрос 5. Виды спектров. Спектральный анализ.
- •Оптические спектры Спектры испускания
- •Полосатые спектры
- •Спектры поглощения
- •Тема 20. Гипотеза де бройля. Соотношения неопределенностей гейзенберга.
- •1. Гипотеза и формула де Бройля. Экспериментальное подтверждение гипотезы.
- •2. Соотношения неопределенностей Гейзенберга.
- •Вопрос 1. Гипотеза де Бройля и ее экспериментальное подтверждение.
- •Вопрос 2. Соотношения неопределенностей Гейзенберга.
- •Тема 21. Волноваяфункция. Уравнение шрёдингера.
- •Вопрос 2. Уравнение Шрёдингера.
- •Вопрос 3. Применение уравнения Шрёдингера к свободному электрону.
- •Вопрос 4. Частица в потенциальной яме. Квантование энергии.
- •Вопрос 5. Прохождение частицы сквозь потенциальный барьер.
- •Вопрос 6. Уравнение Шредингера для атома водорода. Векторная модель атома.
- •Тема 22. Строение атомного ядра.
- •Вопрос 2. Состав атомного ядра. Нуклоны и их взаимопревращаемость.
- •Вопрос 3. Энергия связи и устойчивость ядер.
- •Вопрос 4. Ядерные силы и их свойства.
- •Вопрос 5. Ядерные реакции
- •Тема 23. Явление радиоактивности
- •Вопрос 2. Взаимодействия радиоактивного излучения с веществом.
- •Вопрос 3. Закон радиоактивного распада. Период полураспада.
- •Вопрос 4. Единицы радиоактивности.
- •Вопрос 5. Биологическое действие ионизирующего излучения. Радиационная безопасность.
- •Тема 24. Физика лазеров.
- •Вопрос 2. Взаимодействие света с веществом.
- •Вопрос 3. Устройство лазера. Принцип действия лазера.
- •Вопрос 4. Типы лазеров.
- •Вопрос 5. Свойства и применения лазерного излучения.
Вопрос 3. Энергия связи и устойчивость ядер.
Измерения массы ядер с помощью масс-спектрометров (приборов для разделения ионизированных атомов или молекул по их массам при пропускании пучков ионов через электрические и магнитные поля) позволило установить, что масса атомного ядра не равна сумме масс покоя входящих в него отдельных нуклонов, а несколько меньше ее. Это обусловлено тем, что нуклоны в ядре сильно связаны между собой за счет ядерных сил. Чтобы разделить ядро на отдельные протоны и нейтроны, нужно затратить определенную энергию, которая называется энергией связи ядра.
Энергия связи ядра определяется величиной той работы, которую нужно совершить, чтобы расщепить ядро на составляющие его нуклоны без придания им кинетической энергии. Из закона сохранения энергии следует, что при образовании ядра должна выделяться такая энергия, которую нужно затратить при расщеплении ядра на составляющие его нуклоны.
Энергия связи ядра является разностью между энергией всех свободных нуклонов, составляющих ядро, и их энергией в ядре.
Используя
формулу Эйнштейна
,
получаем выражение для энергии связи
ядра:
.
(22.3)
Здесь
,
- соответственно массы покоя протона,
нейтрона и ядра атома. Поскольку обычно
экспериментально определяются массы
не ядер, а атомов, которые приведены в
таблицах, формулу (22.3) для энергии связи
можно преобразовать в выражение:
,
(22.4)
где
- масса атома водорода;
- масса атома соответствующего элемента.
В этой формуле масса электронов, которая
входит в первое слагаемое
,
компенсируется массой электронов,
образующих вместе с ядром атом массой
.
Выражения
(22.3) и (22.4) позволяют получить практически
одинаковые значения энергии связи ядра.
Величина
,
определяющая энергию связи ядра
,
называетсядефектом
масс.
Дефект массы
характеризует
уменьшение суммарной массы при образовании
ядра из составляющих его нуклонов. При
практическом вычислении Δm
массы всех частиц и атомов выражаются
в атомных
единицах массы
(а.е.м.).
Одной атомной единице массы соответствует
атомная единица энергии (a.e.э.):
1 а.е.э.
= 931,5016 МэВ.
Энергия связи, отнесенная к одному нуклону, т.е. полная энергия связи, деленная на число нуклонов в ядре, называется удельной энергией связи:
.
(22.5)
На
рисунке 22.1 показана зависимость удельной
энергии связи для различных ядер от
массового числа А,
характеризующая различную прочность
связей нуклонов в ядрах разных химических
элементов. Из рисунка видно, что энергия
связи с увеличением А
сначала возрастает, а затем образует
практически горизонтальный участок
при А>40,
а при А>100
медленно уменьшается; это означает,
что устойчивыми с энергической точки
зрения являются ядра с массовыми
числами А,
имеющими
значения приблизительно от 50 до 80, для
которых удельная энергия связи принимает
наибольшее значение. Ядра элементов в
средней части периодической системы
наиболее прочны. В этих ядрах
близка
к 8,7 МэВ/нуклон. По мере увеличения числа
нуклонов в ядре удельная энергия связи
убывает. Ядра атомов химических элементов,
расположенных в конце периодической
системы (например, ядро урана), имеют
≈
7,6 МэВ/нуклон. Это объясняет возможность
выделения энергии при делении тяжелых
ядер. В области малых массовых чисел
имеются острые «пики» удельной энергии
связи. Максимумы характерны для ядер с
четными числами протонов и нейтронов
(
;
;
),
минимумы – для ядер с нечетными
количествами протонов и нейтронов (
;
;
).
Рис. 22.1
Для
легких ядер (водород, литий)
энергетически
выгодным является процесс их слияния,
т.е. синтез более легких ядер; для тяжелых
ядер (уран, плутоний) в определенных
условиях возможен процесс деления. Эти
процессы практически используются при
реализации реакций термоядерного
синтеза и в ядерных реакциях деления.
Данные об энергии связи ядер позволили установить некоторые закономерности строения атомных ядер.
Критерием устойчивости атомных ядер является соотношение между числом протонов и нейтронов в устойчивом ядре. При малых и средних значениях А числа нейтронов и протонов в устойчивых ядрах примерно одинаковы: Z ≈ А – Z. С ростом Z силы кулоновского отталкивания протонов растут пропорционально Z·(Z – 1) ~ Z2 (парное взаимодействие протонов), и для компенсации этого отталкивания ядерным притяжением число нейтронов должно возрастать быстрее числа протонов. Кроме того, с увеличением числа протонов увеличиваются и размеры атомных ядер, поэтому кулоновские силы отталкивания, как силы дальнего действия, начинают преобладать над ядерными силами, т.е. над силами близкого действия. В связи с этим ядра тяжелых химических элементов становятся неустойчивыми, а ядра заурановых элементов являются вообще короткоживущими.