
- •Тема 1. Упругие волны.
- •Вопрос 2. Уравнение плоской волны.
- •Вопрос 3. Принцип суперпозиции волн. Групповая скорость. Стоячие волны.
- •Вопрос 4. Эффект Доплера в акустике.
- •Вопрос 5. Ультразвук. Источники и приемники ультразвуковых волн. Применение ультразвука.
- •Тема 2. Электромагнитные колебания.
- •Вопрос 2. Свободные затухающие электромагнитные колебания. Дифференциальное уравнение свободных затухающих колебаний и его решение.
- •Вопрос 3. Вынужденные электромагнитные колебания. Дифференциальное уравнение вынужденных колебаний и его решение.
- •Вопрос 4. Резонанс напряжений и резонанс токов.
- •Тема 3. Основы теории максвелла для
- •Вопрос 2. Первое уравнение Максвелла в интегральной форме.
- •Вопрос 3. Ток смещения и второе уравнение Максвелла в интегральной форме.
- •Тема 4. Электромагнитные волны.
- •Вопрос 2. Плоская электромагнитная волна. Волновое уравнение для электромагнитного поля.
- •Вопрос 3. Энергия электромагнитных волн.
- •Вопрос 4. Давление электромагнитных волн.
- •Тема 5. Геометрическая оптика.
- •Вопрос 1. Основные законы геометрической оптики.
- •Вопрос 2. Фотометрические величины и их единицы.
- •Тема 6. Преломление света на сферических поверхностях. Тонкие линзы. Формула тонкой линзы и построение изображений предметов с помощью тонкой линзы.
- •3. Построение изображений предметов с помощью тонкой линзы.
- •Вопрос 1. Преломление и отражение света на сферических поверхностях.
- •Вопрос 2.Тонкие линзы. Формула тонкой линзы.
- •Вопрос 3. Построение изображений предметов с помощью тонкой линзы.
- •Тема 7. Световые волны.
- •Вопрос 2. Когерентные световые волны. Интерференция волн.
- •Вопрос 3. Методы наблюдения интерференции света.
- •Тема 8. Интерференция света при отражении от тонких пластинок.
- •Вопрос 1. Полосы равного наклона.
- •Вопрос 2. Полосы равной толщины.
- •Вопрос 3. Кольца Ньютона.
- •Вопрос 4. Применения явления интерференции. Просветление оптики. Интерферометры.
- •Тема 9. Дифракция света.
- •Вопрос 2. Принцип Гюйгенса-Френеля. Зоны Френеля.
- •Вопрос 3. Дифракция света на круглом экране и круглом отверстии.
- •Вопрос 4. Дифракция Фраунгофера на одной щели.
- •Тема 10. Дифракционная решетка,
- •Вопрос 2. Дифракционный спектр.
- •Вопрос 3. Дисперсия и разрешающая способность.
- •Вопрос 4. Дифракция рентгеновских лучей на кристаллической решетке.
- •Тема 11. Взаимодействие света с веществом.
- •Вопрос 2. Электронная теория дисперсии.
- •Вопрос 3. Поглощение света. Закон Бугера-Ламберта.
- •Тема 12. Поляризация света.
- •Вопрос 1. Естественный и поляризованный свет.
- •Вопрос 2. Поляризаторы. Степень поляризации. Закон Малюса.
- •Тема 13. Поляризация света при отражении и преломлении. Закон брюстера. Двойное лучепреломление. Анизотропия кристаллов.
- •Вопрос 1. Поляризация света при отражении и преломлении. Закон Брюстера.
- •Вопрос 2. Поляризация при двойном лучепреломлении. Анизотропия кристаллов.
- •Вопрос 3. Анализ поляризованного света.
- •Тема 14. Искусственное двойноелучепреломление.
- •Вопрос 2. Вращение плоскости поляризации.
- •Тема 15. Элементы специальной теории относительности
- •Вопрос 2. Постулаты специальной теории относительности.
- •Вопрос 3. Преобразования Лоренца.
- •Вопрос 4. Основные законы релятивистской динамики. Закон взаимосвязи массы и энергии.
- •Вопрос 5. Эффект Доплера для световых волн.
- •Вопрос 6. Границы применимости классической механики.
- •Тема 16. Квантовая оптика.
- •Вопрос 2. Энергетическая светимость. Излучательная, отражательная и поглощательная способность тела.
- •Вопрос 3. Абсолютно черное тело. Серое тело. Закон Кирхгофа.
- •Вопрос 4. Закон Стефана-Больцмана. Законы Вина.
- •Вопрос 5. Формула Планка.
- •Вопрос 6. Оптическая пирометрия.
- •Тема 17. Фотоэлектрический эффект.
- •Вопрос 2. Уравнение Эйнштейна для внешнего фотоэффекта Фотонная теория света. Масса, энергия и импульс фотона.
- •Вопрос 3. Однофотонный и многофотонный фотоэффект.
- •Вопрос 4. Внутренний фотоэффект.
- •Тема 18. Давление света. Эффект комптона.
- •Вопрос 2. Давление света
- •Вопрос 2. Эффект Комптона.
- •Вопрос 3. Тормозное и характеристическое рентгеновское излучение.
- •Тема 19. Атом водорода по резерфорду и бору
- •Вопрос 2. Классическая модель атома по Резерфорду.
- •Вопрос 3. Постулаты Бора и объяснение происхождения линейчатых спектров. Закономерности в атомных спектрах.
- •Вопрос 4. Теория атома водорода.
- •Вопрос 5. Виды спектров. Спектральный анализ.
- •Оптические спектры Спектры испускания
- •Полосатые спектры
- •Спектры поглощения
- •Тема 20. Гипотеза де бройля. Соотношения неопределенностей гейзенберга.
- •1. Гипотеза и формула де Бройля. Экспериментальное подтверждение гипотезы.
- •2. Соотношения неопределенностей Гейзенберга.
- •Вопрос 1. Гипотеза де Бройля и ее экспериментальное подтверждение.
- •Вопрос 2. Соотношения неопределенностей Гейзенберга.
- •Тема 21. Волноваяфункция. Уравнение шрёдингера.
- •Вопрос 2. Уравнение Шрёдингера.
- •Вопрос 3. Применение уравнения Шрёдингера к свободному электрону.
- •Вопрос 4. Частица в потенциальной яме. Квантование энергии.
- •Вопрос 5. Прохождение частицы сквозь потенциальный барьер.
- •Вопрос 6. Уравнение Шредингера для атома водорода. Векторная модель атома.
- •Тема 22. Строение атомного ядра.
- •Вопрос 2. Состав атомного ядра. Нуклоны и их взаимопревращаемость.
- •Вопрос 3. Энергия связи и устойчивость ядер.
- •Вопрос 4. Ядерные силы и их свойства.
- •Вопрос 5. Ядерные реакции
- •Тема 23. Явление радиоактивности
- •Вопрос 2. Взаимодействия радиоактивного излучения с веществом.
- •Вопрос 3. Закон радиоактивного распада. Период полураспада.
- •Вопрос 4. Единицы радиоактивности.
- •Вопрос 5. Биологическое действие ионизирующего излучения. Радиационная безопасность.
- •Тема 24. Физика лазеров.
- •Вопрос 2. Взаимодействие света с веществом.
- •Вопрос 3. Устройство лазера. Принцип действия лазера.
- •Вопрос 4. Типы лазеров.
- •Вопрос 5. Свойства и применения лазерного излучения.
Вопрос 3. Вынужденные электромагнитные колебания. Дифференциальное уравнение вынужденных колебаний и его решение.
Для получения незатухающих колебаний нужно непрерывно пополнять энергию контура от внешнего источника, чтобы компенсировать потери на джоулево тепло, оказывая внешнее периодически изменяющееся воздействие, например, включив последовательно с элементами контура переменную э.д.с. (ε = ε0cosωt) или, разорвав контур, подавать на образовавшиеся контакты переменное напряжение (U = Um cosωt) (рис. 2.5).
Рис. 2.5
Колебания, возникающие в CLR-цепочке при наличии переменной э.д.с., называются вынужденными.
Эту э.д.с. нужно прибавить к э.д.с. самоиндукции, в результате уравнение (2.3) примет вид
Ld2q/dt2 +Rdq/dt + q/C = Um cosωt (2.20)
– дифференциальное уравнение вынужденных гармонических колебаний.
Как известно, общее решение этого уравнения состоит из двух решений:
общего решения однородного дифференциального уравнения вида (2.9) и
частного решения неоднородного дифференциального уравнения (2.20).
Первое
слагаемое быстро затухает, его время
релаксации τ
= 1/β.
Поэтому при
вклад в решение (2.20) дает только частное
решение (второе слагаемое). Поэтому
вынужденные колебания электрического
заряда в цепи контура определяются
частным решением этого неоднородного
уравнения. Это частное решение имеет
вид
q = qmcos(ωt - ψ). (2.21)
Установившиеся вынужденные колебания описываются функцией (2.21), где ψ – сдвиг фаз между внешней э.д.с. и напряжением (зарядом) на конденсаторе, а
tg ψ = R/(1/ωC – ωL).
Продифференцировав выражение (2.21) по переменной t, получим выражение для силы тока в контуре при установившихся колебаниях
I = - ωqm sin(ωt - ψ) = Im cos(ωt - ψ + π/2),
где амплитуда силы тока в контуре
,
RL = ωL – реактивное индуктивное сопротивление,
RC = 1/ωC – реактивное емкостное сопротивление,
Х = ωL – 1/ωC – реактивное сопротивление,
Z
=
– полное (эффективное) сопротивление электрической цепи (колебательного контура).
Амплитуда вынужденных колебаний зависит не только от амплитуды внешней э.д.с., но и от ее частоты ω.
Выражение для силы тока можно записать также в виде
I = Im cos(ωt - φ), (2.22)
где φ = ψ – π/2 –сдвиг по фазе между током в контуре и приложенным напряжением, а
tgφ = tg(ψ – π/2) = –1/tgψ = (ωL –1/ωC)/R. (2.23)
Разделив выражение (2.21) на емкость, получим напряжение на конденсаторе
UC = (qm/C) cos(ωt - ψ) = UCmcos(ωt – φ –π/2), (2.24)
где
UCm
= qm/C
= Um/ωC=Im/ωC.
(2.25)
Умножив производную функции (2.22) на индуктивность L, получим напряжение на индуктивности
UL = L(dI/dt) = – ωLImsin(ωt – φ) = ULmcos(ωt – φ + π/2), (2.26)
где ULm = ωLIm.
Выражение (2. 20) можно представить в виде
,
(2.27)
где
,
,
– соответственно напряжения на активном
сопротивленииR,
на конденсаторе С
и на индуктивности L.
Таким образом, сумма напряжений на
отдельных элементах контура равна в
каждый момент времени внешнему
напряжению (рис. 2.5).
Сравнивая (2.22), (2.24) и (2.26) видим, что напряжение на конденсаторе отстает по фазе от силы тока в контуре на π/2, а напряжение на катушке индуктивности опережает ток на π/2. Напряжение на активном сопротивлении изменяется в фазе с током. Эти же результаты можно получить с помощью векторной диаграммы, как для переменных токов (рис. 2.6). Установившиеся вынужденные электромагнитные колебания можно рассматривать как протекание переменного электрического тока с частотой ω в цепи, содержащей L, C и R.
Рис. 2.6
Гармоническое
колебание может быть задано с помощью
вектора, длина которого равна амплитуде
колеблющейся величины, а направление
вектора образует с некоторой осью угол,
равный начальной фазе колебания. В
качестве таковой возьмем ось токов.
Тогда получится диаграмма, приведенная
на рис. 2.6. Согласно (2. 27) величины где
,
и
в сумме должны быть равны приложенному
напряжениюU.
В соответствии с этим напряжение U
на рис. 2.6 изображается вектором, равным
сумме векторов
,
и
.