
- •Тема 1. Упругие волны.
- •Вопрос 2. Уравнение плоской волны.
- •Вопрос 3. Принцип суперпозиции волн. Групповая скорость. Стоячие волны.
- •Вопрос 4. Эффект Доплера в акустике.
- •Вопрос 5. Ультразвук. Источники и приемники ультразвуковых волн. Применение ультразвука.
- •Тема 2. Электромагнитные колебания.
- •Вопрос 2. Свободные затухающие электромагнитные колебания. Дифференциальное уравнение свободных затухающих колебаний и его решение.
- •Вопрос 3. Вынужденные электромагнитные колебания. Дифференциальное уравнение вынужденных колебаний и его решение.
- •Вопрос 4. Резонанс напряжений и резонанс токов.
- •Тема 3. Основы теории максвелла для
- •Вопрос 2. Первое уравнение Максвелла в интегральной форме.
- •Вопрос 3. Ток смещения и второе уравнение Максвелла в интегральной форме.
- •Тема 4. Электромагнитные волны.
- •Вопрос 2. Плоская электромагнитная волна. Волновое уравнение для электромагнитного поля.
- •Вопрос 3. Энергия электромагнитных волн.
- •Вопрос 4. Давление электромагнитных волн.
- •Тема 5. Геометрическая оптика.
- •Вопрос 1. Основные законы геометрической оптики.
- •Вопрос 2. Фотометрические величины и их единицы.
- •Тема 6. Преломление света на сферических поверхностях. Тонкие линзы. Формула тонкой линзы и построение изображений предметов с помощью тонкой линзы.
- •3. Построение изображений предметов с помощью тонкой линзы.
- •Вопрос 1. Преломление и отражение света на сферических поверхностях.
- •Вопрос 2.Тонкие линзы. Формула тонкой линзы.
- •Вопрос 3. Построение изображений предметов с помощью тонкой линзы.
- •Тема 7. Световые волны.
- •Вопрос 2. Когерентные световые волны. Интерференция волн.
- •Вопрос 3. Методы наблюдения интерференции света.
- •Тема 8. Интерференция света при отражении от тонких пластинок.
- •Вопрос 1. Полосы равного наклона.
- •Вопрос 2. Полосы равной толщины.
- •Вопрос 3. Кольца Ньютона.
- •Вопрос 4. Применения явления интерференции. Просветление оптики. Интерферометры.
- •Тема 9. Дифракция света.
- •Вопрос 2. Принцип Гюйгенса-Френеля. Зоны Френеля.
- •Вопрос 3. Дифракция света на круглом экране и круглом отверстии.
- •Вопрос 4. Дифракция Фраунгофера на одной щели.
- •Тема 10. Дифракционная решетка,
- •Вопрос 2. Дифракционный спектр.
- •Вопрос 3. Дисперсия и разрешающая способность.
- •Вопрос 4. Дифракция рентгеновских лучей на кристаллической решетке.
- •Тема 11. Взаимодействие света с веществом.
- •Вопрос 2. Электронная теория дисперсии.
- •Вопрос 3. Поглощение света. Закон Бугера-Ламберта.
- •Тема 12. Поляризация света.
- •Вопрос 1. Естественный и поляризованный свет.
- •Вопрос 2. Поляризаторы. Степень поляризации. Закон Малюса.
- •Тема 13. Поляризация света при отражении и преломлении. Закон брюстера. Двойное лучепреломление. Анизотропия кристаллов.
- •Вопрос 1. Поляризация света при отражении и преломлении. Закон Брюстера.
- •Вопрос 2. Поляризация при двойном лучепреломлении. Анизотропия кристаллов.
- •Вопрос 3. Анализ поляризованного света.
- •Тема 14. Искусственное двойноелучепреломление.
- •Вопрос 2. Вращение плоскости поляризации.
- •Тема 15. Элементы специальной теории относительности
- •Вопрос 2. Постулаты специальной теории относительности.
- •Вопрос 3. Преобразования Лоренца.
- •Вопрос 4. Основные законы релятивистской динамики. Закон взаимосвязи массы и энергии.
- •Вопрос 5. Эффект Доплера для световых волн.
- •Вопрос 6. Границы применимости классической механики.
- •Тема 16. Квантовая оптика.
- •Вопрос 2. Энергетическая светимость. Излучательная, отражательная и поглощательная способность тела.
- •Вопрос 3. Абсолютно черное тело. Серое тело. Закон Кирхгофа.
- •Вопрос 4. Закон Стефана-Больцмана. Законы Вина.
- •Вопрос 5. Формула Планка.
- •Вопрос 6. Оптическая пирометрия.
- •Тема 17. Фотоэлектрический эффект.
- •Вопрос 2. Уравнение Эйнштейна для внешнего фотоэффекта Фотонная теория света. Масса, энергия и импульс фотона.
- •Вопрос 3. Однофотонный и многофотонный фотоэффект.
- •Вопрос 4. Внутренний фотоэффект.
- •Тема 18. Давление света. Эффект комптона.
- •Вопрос 2. Давление света
- •Вопрос 2. Эффект Комптона.
- •Вопрос 3. Тормозное и характеристическое рентгеновское излучение.
- •Тема 19. Атом водорода по резерфорду и бору
- •Вопрос 2. Классическая модель атома по Резерфорду.
- •Вопрос 3. Постулаты Бора и объяснение происхождения линейчатых спектров. Закономерности в атомных спектрах.
- •Вопрос 4. Теория атома водорода.
- •Вопрос 5. Виды спектров. Спектральный анализ.
- •Оптические спектры Спектры испускания
- •Полосатые спектры
- •Спектры поглощения
- •Тема 20. Гипотеза де бройля. Соотношения неопределенностей гейзенберга.
- •1. Гипотеза и формула де Бройля. Экспериментальное подтверждение гипотезы.
- •2. Соотношения неопределенностей Гейзенберга.
- •Вопрос 1. Гипотеза де Бройля и ее экспериментальное подтверждение.
- •Вопрос 2. Соотношения неопределенностей Гейзенберга.
- •Тема 21. Волноваяфункция. Уравнение шрёдингера.
- •Вопрос 2. Уравнение Шрёдингера.
- •Вопрос 3. Применение уравнения Шрёдингера к свободному электрону.
- •Вопрос 4. Частица в потенциальной яме. Квантование энергии.
- •Вопрос 5. Прохождение частицы сквозь потенциальный барьер.
- •Вопрос 6. Уравнение Шредингера для атома водорода. Векторная модель атома.
- •Тема 22. Строение атомного ядра.
- •Вопрос 2. Состав атомного ядра. Нуклоны и их взаимопревращаемость.
- •Вопрос 3. Энергия связи и устойчивость ядер.
- •Вопрос 4. Ядерные силы и их свойства.
- •Вопрос 5. Ядерные реакции
- •Тема 23. Явление радиоактивности
- •Вопрос 2. Взаимодействия радиоактивного излучения с веществом.
- •Вопрос 3. Закон радиоактивного распада. Период полураспада.
- •Вопрос 4. Единицы радиоактивности.
- •Вопрос 5. Биологическое действие ионизирующего излучения. Радиационная безопасность.
- •Тема 24. Физика лазеров.
- •Вопрос 2. Взаимодействие света с веществом.
- •Вопрос 3. Устройство лазера. Принцип действия лазера.
- •Вопрос 4. Типы лазеров.
- •Вопрос 5. Свойства и применения лазерного излучения.
Вопрос 2. Классическая модель атома по Резерфорду.
Модели атома. 1903 году Дж. Томсон, предложил модель атома, согласно которой атом представляет собой сферу, равномерно заполненную положительным электричеством. Электроны погружены в эту среду и взаимодействуют с элементами этой среды по закону Кулона (рис. 19.1, а). Согласно этой модели атом в целом нейтрален: суммарный заряд сферы и заряда электронов равен нулю. Спектр такого атома должен был быть сложным, но никоим образом не линейчатым, что противоречило экспериментальным данным. По модели Томсона колеблющийся электрон (осциллятор) может испускать электромагнитную волну. При отклонении электрона от положения равновесия возникают силы, которые стремятся возвратить его в положение равновесия. Благодаря этому возникают колебания электрона, которые обусловливают излучение атома.
Была предложена также модель атома, изображенная на рис. 19.1,б: атом состоял из сферы, в центре которой находилось положительно заряженное ядро, а вокруг него располагались электроны. Однако и эта модель не смогла объяснить результаты экспериментов.
Наиболее известна планетарная модель атома, предложенная английским физиком Э. Резерфордом (рис. 19.1, в).
Первые эксперименты по изучению строения атома были выполнены
Э. Резерфордом и его сотрудниками Э.Марсденом и Х.Гейгером в 1909–1911 годах. Резерфорд предложил применить зондирование атома с помощью
α-частиц, которые возникают при радиоактивном распаде радия и некоторых других элементов.
а) б) в)
Рис. 19.1
Эти
опыты стали возможны благодаря открытию
явления радиоактивности, при котором
в результате естественного радиоактивного
распада тяжелых элементов выделяются
-частицы,
имеющие положительный заряд, равный
заряду двух электронов, масса
-частицы
в 4 раза больше массы атома водорода,
т.е. они являются ионами атома гелия
.
Энергия
-частиц,
испускаемых различными тяжелыми
химическими элементами, изменяется от
эВ
для урана до
эВ
для тория. Масса
α-частиц
примерно в 7300 раз больше массы электрона,
а положительный заряд равен удвоенному
элементарному заряду. В этих опытах
использовались α-частицы
с кинетической энергией 5 МэВ,
что соответствовало их скорости около
м/с.
Эти частицы бомбардировали фольги из тяжелых металлов (золото, серебро, медь и др.). Электроны, входящие в состав атомов, вследствие малой массы не изменяют траекторию α-частицы. Рассеяние, то есть изменение направления движения α-частиц, может вызвать только тяжелая положительно заряженная часть атома.
Цель опытов Резерфорда состояла в том, чтобы экспериментально проверить основные положения модели атома, предложенной Томсоном.
Схема опыта Резерфорда по рассеянию α-частиц показана на рис. 19.2.
Здесь K – свинцовый контейнер с радиоактивным веществом, Э – экран, покрытый сернистым цинком, Ф – золотая фольга, M – микроскоп. От радиоактивного источника, заключенного в свинцовый контейнер,
α-частицы
направлялись на тонкую металлическую
фольгу. Толщина
фольги составляла
м
(1 мкм),
что эквивалентно примерно 400 слоям из
атомов золота.
Рассеянные фольгой
α-частицы
попадали на экран, покрытый слоем
кристаллов сульфида цинка, способных
светиться под ударами быстрых заряженных
частиц. Сцинтилляции (вспышки) на экране
наблюдались глазом
Рис. 19.2
с помощью микроскопа. Микроскоп и связанный с ним экран можно было вращать вокруг оси, проходящей через центр фольги. Т.е. можно было всегда измерить угол отклонения α-частиц от прямолинейной траектории движения. Весь прибор помещался в вакуум, чтобы α-частицы не рассеивались при столкновении с молекулами воздуха.
Наблюдения рассеянных α-частиц в опыте Резерфорда можно было проводить под различными углами φ к первоначальному направлению пучка. Было обнаружено, что большинство α-частиц проходило через тонкий слой металла, практически не испытывая отклонения. Однако небольшая часть частиц все же отклонялась на значительные углы, превышающие 30°. Очень редкие α-частицы (приблизительно одна на десять тысяч) испытывали отклонение на углы, близкие к 180°. Этот результат был неожиданным, т.к. находился в противоречии с моделью атома Томсона, согласно которой положительный заряд распределён по всему объёму атома. При таком распределении положительный заряд не может создать сильное электрическое поле, способное отбросить α-частицы назад. Электрическое поле однородного заряженного шара максимально на его поверхности и убывает до нуля по мере приближения к центру шара. Если бы радиус шара, в котором сосредоточен весь положительный заряд атома, уменьшился в n раз, то максимальная сила отталкивания, действующая на α-частицу по закону Кулона, возросла бы в n2 раз. Тогда при достаточно большом значении n α-частицы могли бы испытать рассеяние на большие углы вплоть до 180°. Эти соображения привели Резерфорда к выводу, что атом почти пустой, и весь его положительный заряд сосредоточен в малом объёме, имеющем размеры порядка 10-14 м. Эту часть атома Резерфорд назвал атомным ядром. Электроны, по мнению Резерфорда, движутся вокруг ядра с размерами порядка 10–14 м. Так возникла ядерная модель атома (рис. 19.1, в).
На
основании полученных результатов
Резерфорд, учитывая, что электроны
атома не могут существенно влиять на
рассеяние относительно тяжелых и быстрых
-частиц,
сделал выводы, которые были положены в
основу планетарной (ядерной) модели
атомов:
1) существует ядро, в котором сосредоточена вся масса атома и весь его положительный заряд, причем размеры ядра значительно меньше, чем размер самого атома;
2) электроны, которые входят в состав атома, движутся вокруг ядра по круговым орбитам.
Исходя
из этих двух предпосылок и предполагая,
что взаимодействие между налетающей
-частицей
и положительно заряженным ядром
определяется кулоновскими силами,
Резерфорд установил, что атомные ядра
имеют размеры
м,
т.е. они в
раз меньше размеров атомов.Ядро
занимает только 10–12
часть полного объёма атома, но содержит
весь
положительный
заряд и не менее 99,95 % его массы. Вещество,
составляющее ядро атома, имеет колоссальную
плотность ρ≈1017
кг/м3.
Заряд ядра должен быть равен суммарному
заряду всех электронов, входящих в
состав атома. Впоследствии удалось
установить, что если заряд электрона
принять за единицу, то заряд ядра в
точности равен номеру данного элемента
в таблице Менделеева.
Величина
положительного электрического заряда
атомного ядра Z
определяется
количеством протонов в ядре (и,
следовательно, количеством электронов
в атомных оболочках), которое совпадает
с порядковым номером элемента в
периодической таблице. Заряд равен Zе,
где е=1,602·10-19
Кл
– абсолютная величина элементарного
электрического заряда. Заряд определяет
химические свойства всех изотопов
данного элемента.
В 1911 Резерфорд, используя закон Кулона, получил формулу
,
(19.1)
где N – количество α-частиц, падающих в единицу времени на рассеиватель; dN – количество рассеянных в единицу времени α-частиц в телесном угле dΩ под углом θ; Ze и n – заряд ядер рассеивателя и их концентрация; dx − толщина слоя фольги; W − энергия α-частиц.
Прямые опыты по измерению заряда ядер на основе формулы Резерфорда были выполнены Чедвиком в 1920 году. Схема опыта Чедвика приведена на рис. 19.3.
Рассеиватель в виде кольца, (заштрихованого на рис. 19.3, размещался соосно и на равных расстояниях между источником И и детектором α-частиц Д. При измерении количества dN рассеянных α-частиц отверстие в кольце закрывалось экраном, который поглощал прямой пучок α-частиц из источника в детектор.
Рис. 19.3
Детектор регистрировал только α-частицы, рассеянные в телесном угле dΩ под углом θ к падающему пучку α-частиц. Затем кольцо перекрывалось экраном с отверстием, и измерялась плотность тока α-частиц в точке расположения детектора. По полученным данным, рассчитывали
количество N α-частиц, падающих на кольцо в единицу времени. Таким образом, если известна энергия α- частиц, испускаемых источником, без труда определялась величина Z в формуле (19.1).
Формула Резерфорда позволила объяснить экспериментальные результаты по рассеянию α-частиц на тяжелых ядрах , что привело к открытию атомного ядра и созданию ядерной модели атома.
Модель атома, предложенная Резерфордом, напоминает Солнечную систему. Именно поэтому модель Резерфорда получила название планетарной модели атома. Эта модель стала значительным шагом на пути к современным представлениям о строении атома. Лежащее в ее основе понятие атомного ядра, в котором сосредоточены весь положительный заряд атома и практически вся его масса, сохранило свое значение до настоящего времени.
Однако, в отличие от планетарной модели Солнечной системы, планетарная модель атома оказывается внутренне противоречивой с точки зрения классической физики. И это, прежде всего, связано с наличием у электрона заряда. Согласно законам классической электродинамики вращающийся вокруг ядра электрон, как и любая ускоренно движущаяся заряженная частица, будет излучать электромагнитные волны. Спектр такого излучения должен быть непрерывным, то есть содержать электромагнитные волны с любой длиной волны. Уже этот вывод противоречит линейчатости спектров излучения атомов, наблюдаемой на опыте.
Кроме
того, непрерывное излучение уменьшает
кинетическую энергию электрона. Поэтому,
за счет излучения радиус орбиты
движущегося электрона обязан уменьшаться,
и, в конце концов, электрон должен упасть
на ядро, как показывают оценки, за время
.
Однако в действительности атом водорода
является устойчивой и «долгоживущей»
электромеханической системой. Иными
словами, планетарная модель атома с
точки зрения классической физики
оказывается неустойчивой.