
- •Тема 1. Упругие волны.
- •Вопрос 2. Уравнение плоской волны.
- •Вопрос 3. Принцип суперпозиции волн. Групповая скорость. Стоячие волны.
- •Вопрос 4. Эффект Доплера в акустике.
- •Вопрос 5. Ультразвук. Источники и приемники ультразвуковых волн. Применение ультразвука.
- •Тема 2. Электромагнитные колебания.
- •Вопрос 2. Свободные затухающие электромагнитные колебания. Дифференциальное уравнение свободных затухающих колебаний и его решение.
- •Вопрос 3. Вынужденные электромагнитные колебания. Дифференциальное уравнение вынужденных колебаний и его решение.
- •Вопрос 4. Резонанс напряжений и резонанс токов.
- •Тема 3. Основы теории максвелла для
- •Вопрос 2. Первое уравнение Максвелла в интегральной форме.
- •Вопрос 3. Ток смещения и второе уравнение Максвелла в интегральной форме.
- •Тема 4. Электромагнитные волны.
- •Вопрос 2. Плоская электромагнитная волна. Волновое уравнение для электромагнитного поля.
- •Вопрос 3. Энергия электромагнитных волн.
- •Вопрос 4. Давление электромагнитных волн.
- •Тема 5. Геометрическая оптика.
- •Вопрос 1. Основные законы геометрической оптики.
- •Вопрос 2. Фотометрические величины и их единицы.
- •Тема 6. Преломление света на сферических поверхностях. Тонкие линзы. Формула тонкой линзы и построение изображений предметов с помощью тонкой линзы.
- •3. Построение изображений предметов с помощью тонкой линзы.
- •Вопрос 1. Преломление и отражение света на сферических поверхностях.
- •Вопрос 2.Тонкие линзы. Формула тонкой линзы.
- •Вопрос 3. Построение изображений предметов с помощью тонкой линзы.
- •Тема 7. Световые волны.
- •Вопрос 2. Когерентные световые волны. Интерференция волн.
- •Вопрос 3. Методы наблюдения интерференции света.
- •Тема 8. Интерференция света при отражении от тонких пластинок.
- •Вопрос 1. Полосы равного наклона.
- •Вопрос 2. Полосы равной толщины.
- •Вопрос 3. Кольца Ньютона.
- •Вопрос 4. Применения явления интерференции. Просветление оптики. Интерферометры.
- •Тема 9. Дифракция света.
- •Вопрос 2. Принцип Гюйгенса-Френеля. Зоны Френеля.
- •Вопрос 3. Дифракция света на круглом экране и круглом отверстии.
- •Вопрос 4. Дифракция Фраунгофера на одной щели.
- •Тема 10. Дифракционная решетка,
- •Вопрос 2. Дифракционный спектр.
- •Вопрос 3. Дисперсия и разрешающая способность.
- •Вопрос 4. Дифракция рентгеновских лучей на кристаллической решетке.
- •Тема 11. Взаимодействие света с веществом.
- •Вопрос 2. Электронная теория дисперсии.
- •Вопрос 3. Поглощение света. Закон Бугера-Ламберта.
- •Тема 12. Поляризация света.
- •Вопрос 1. Естественный и поляризованный свет.
- •Вопрос 2. Поляризаторы. Степень поляризации. Закон Малюса.
- •Тема 13. Поляризация света при отражении и преломлении. Закон брюстера. Двойное лучепреломление. Анизотропия кристаллов.
- •Вопрос 1. Поляризация света при отражении и преломлении. Закон Брюстера.
- •Вопрос 2. Поляризация при двойном лучепреломлении. Анизотропия кристаллов.
- •Вопрос 3. Анализ поляризованного света.
- •Тема 14. Искусственное двойноелучепреломление.
- •Вопрос 2. Вращение плоскости поляризации.
- •Тема 15. Элементы специальной теории относительности
- •Вопрос 2. Постулаты специальной теории относительности.
- •Вопрос 3. Преобразования Лоренца.
- •Вопрос 4. Основные законы релятивистской динамики. Закон взаимосвязи массы и энергии.
- •Вопрос 5. Эффект Доплера для световых волн.
- •Вопрос 6. Границы применимости классической механики.
- •Тема 16. Квантовая оптика.
- •Вопрос 2. Энергетическая светимость. Излучательная, отражательная и поглощательная способность тела.
- •Вопрос 3. Абсолютно черное тело. Серое тело. Закон Кирхгофа.
- •Вопрос 4. Закон Стефана-Больцмана. Законы Вина.
- •Вопрос 5. Формула Планка.
- •Вопрос 6. Оптическая пирометрия.
- •Тема 17. Фотоэлектрический эффект.
- •Вопрос 2. Уравнение Эйнштейна для внешнего фотоэффекта Фотонная теория света. Масса, энергия и импульс фотона.
- •Вопрос 3. Однофотонный и многофотонный фотоэффект.
- •Вопрос 4. Внутренний фотоэффект.
- •Тема 18. Давление света. Эффект комптона.
- •Вопрос 2. Давление света
- •Вопрос 2. Эффект Комптона.
- •Вопрос 3. Тормозное и характеристическое рентгеновское излучение.
- •Тема 19. Атом водорода по резерфорду и бору
- •Вопрос 2. Классическая модель атома по Резерфорду.
- •Вопрос 3. Постулаты Бора и объяснение происхождения линейчатых спектров. Закономерности в атомных спектрах.
- •Вопрос 4. Теория атома водорода.
- •Вопрос 5. Виды спектров. Спектральный анализ.
- •Оптические спектры Спектры испускания
- •Полосатые спектры
- •Спектры поглощения
- •Тема 20. Гипотеза де бройля. Соотношения неопределенностей гейзенберга.
- •1. Гипотеза и формула де Бройля. Экспериментальное подтверждение гипотезы.
- •2. Соотношения неопределенностей Гейзенберга.
- •Вопрос 1. Гипотеза де Бройля и ее экспериментальное подтверждение.
- •Вопрос 2. Соотношения неопределенностей Гейзенберга.
- •Тема 21. Волноваяфункция. Уравнение шрёдингера.
- •Вопрос 2. Уравнение Шрёдингера.
- •Вопрос 3. Применение уравнения Шрёдингера к свободному электрону.
- •Вопрос 4. Частица в потенциальной яме. Квантование энергии.
- •Вопрос 5. Прохождение частицы сквозь потенциальный барьер.
- •Вопрос 6. Уравнение Шредингера для атома водорода. Векторная модель атома.
- •Тема 22. Строение атомного ядра.
- •Вопрос 2. Состав атомного ядра. Нуклоны и их взаимопревращаемость.
- •Вопрос 3. Энергия связи и устойчивость ядер.
- •Вопрос 4. Ядерные силы и их свойства.
- •Вопрос 5. Ядерные реакции
- •Тема 23. Явление радиоактивности
- •Вопрос 2. Взаимодействия радиоактивного излучения с веществом.
- •Вопрос 3. Закон радиоактивного распада. Период полураспада.
- •Вопрос 4. Единицы радиоактивности.
- •Вопрос 5. Биологическое действие ионизирующего излучения. Радиационная безопасность.
- •Тема 24. Физика лазеров.
- •Вопрос 2. Взаимодействие света с веществом.
- •Вопрос 3. Устройство лазера. Принцип действия лазера.
- •Вопрос 4. Типы лазеров.
- •Вопрос 5. Свойства и применения лазерного излучения.
Тема 2. Электромагнитные колебания.
Вопросы:
1.Свободные электромагнитные колебания в LC-контуре. Дифференциальное уравнение свободных колебаний и его решение.
2. Свободные затухающие электромагнитные колебания. Дифференциальное уравнение свободных затухающих колебаний и его решение.
3. Вынужденные электромагнитные колебания. Дифференциальное уравнение вынужденных колебаний и его решение.
4. Резонанс напряжений и резонанс токов.
Вопрос 1. Свободные электромагнитные колебания в LC-контуре. Дифференциальное уравнение свободных колебаний и его решение.
Электромагнитными
колебаниями
в цепи называются периодические изменения
во времени значений силы тока и напряжения
в электрической цепи, а также обусловленные
этим взаимосвязанные колебания
электрического и магнитного полей,
которые описывают соответственно
векторы напряженности электрического
и магнитного
полей. Примером электрической цепи, в
которой возникают такие колебания,
является электрический колебательный
контур, содержащий последовательно
соединенные конденсатор емкостьюС,
катушку индуктивностью L
и резистор сопротивлением R,
(рис.2.1).
Если сопротивление R мало (R→0) электрический контур является идеальным (LC – контур). При R≠0 часть электрической энергии будет расходоваться на нагревание проводников и будет наблюдаться затухание колебательных процессов.
Рис.2.1
Колебания электрического тока в контуре можно вызвать, либо
сообщив обкладкам конденсатора некоторый начальный заряд q, либо возбудив в катушке индуктивности ток. Воспользуемся первым способом. При разомкнутом ключе К зарядим конденсатор С. Между обкладками конденсатора возникнет электрическое поле, энергия которого WC = q2/2C.
После замыкания ключа К конденсатор начнет разряжаться и в контуре потечет электрический ток I. В результате энергия электрического поля будет уменьшаться, но возникнет и начнет увеличиваться энергия магнитного поля, обусловленного током, текущим через индуктивность L. Энергия магнитного поля WL=LI2/2. Если R = 0 (рис. 2.2), то в момент, когда напряжение на конденсаторе, заряд, а следовательно и энергия WC обращаются в нуль, энергия магнитного поля WL и ток достигают наибольшего значения (начиная с этого момента ток течет за счет э.д.с. самоиндукции εс). В дальнейшем ток уменьшается и, когда заряды на обкладках конденсатора С достигнут первоначального значения q (но противоположных знаков), сила тока в цепи станет равной нулю.
WC = q2/2C WC = 0 WC = q2/2C WC = 0 WC = q2/2C
WL = 0 WL = LI2/2 WL = 0 WL = LI2/2 WL = 0
Рис .2.2
После этого рассмотренные процессы начнут протекать в обратном направлении, контур вернется в исходное состояние и весь цикл повторится снова. Колебания электрического тока (заряда, напряжения)
сопровождаются взаимными превращениями энергий электрического и магнитного полей.
При возрастании электрического заряда на положительно заряженной обкладке конденсатора сила тока в цепи равна
I = dq/dt. (2.1)
Для расчета электрической цепи запишем закон Ома, условившись, что обход контура будем совершать против часовой стрелки:
IR = φ1 – φ2 + εс. (2.2)
Подставив разность потенциалов между обкладками φ2 – φ1 = q/C и э.д.с. самоиндукции εc = –LdI/dt, равенство (2.2) можно переписать в виде дифференциального уравнения второго порядка по отношению к заряду q=q(t) на обкладках конденсатора, и таким образом получить дифференциальное уравнение второго порядка колебаний заряда в контуре:
.
(2.3)
Напомним, что дифференциальным уравнением называется уравнение, содержащее искомую функцию, ее производные различных порядков и независимые переменные. Например, в выражении (2.3)
присутствует величина заряда q (искомая переменная функция, зависящая от времени), первая производная этой функции по времени dq/dt и вторая производная этой функции по времени d2q/dt2.
Поскольку внешние э.д.с. в контуре отсутствуют, то рассматриваемые колебания представляют собой свободные колебания.
Если учесть, что R = 0, то процесс периодического превращения энергии электрического поля в энергию магнитного поля и обратно будет продолжаться неограниченно долго, и мы получим незатухающие электрические колебания. Напряжение на обкладках конденсатора меняется во времени по закону U = U0cosω0t, а ток в катушке индуктивности – I = I0cosω0t, т. е свободные колебания в контуре являются гармоническими с частотой ω0 = 2π/Т0. Используя стандартные обозначения для собственной циклической частоты гармонических колебаний
,
(2.4)
уравнение (2.3) перепишем так
(2.4а)
– дифференциальное уравнение свободных гармонических колебаний электрического заряда в контуре.
Решением уравнения (2.4а) является функция
q = qmcos(ω0t + α). (2.5)
Таким образом, заряд на обкладках конденсатора изменяется по гармоническому закону с частотой ω0 (2.4), которая называется собственной циклической частотой контура, т.е. соответствует собственной частоте гармонического осциллятора.
Из (2.4) получаем выражение для периода колебаний (формула Томсона):
.
(2.6)
Используя известную формулу q = UC и (2.5), запишем выражение для напряжения на конденсаторе:
Uс = (1/C)qmcos(ω0t + α) = Um cos(ω0t + α). (2.7)
Продифференцировав функцию (2.5) по времени, получим выражение для силы тока в контуре:
I = - ω0qm sin(ω0t + α) = Im cos(ω0t + α + π/2). (2.8)
Из (2.8) видно, что сила тока в катушке индуктивности L опережает по фазе напряжение на конденсаторе C на π/2. Сопоставление формул (2.5), (2.7) и (2.8) показывает, что в момент, когда ток достигает наибольшего значения, заряд и напряжение обращаются в нуль, и наоборот, как мы уже это установили ранее, основываясь на энергетических соображениях. Амплитудные значения тока и напряжения:
Um=qm/C,
Im
= ω0qm,
Um
=
Im.