
- •Тема 1. Упругие волны.
- •Вопрос 2. Уравнение плоской волны.
- •Вопрос 3. Принцип суперпозиции волн. Групповая скорость. Стоячие волны.
- •Вопрос 4. Эффект Доплера в акустике.
- •Вопрос 5. Ультразвук. Источники и приемники ультразвуковых волн. Применение ультразвука.
- •Тема 2. Электромагнитные колебания.
- •Вопрос 2. Свободные затухающие электромагнитные колебания. Дифференциальное уравнение свободных затухающих колебаний и его решение.
- •Вопрос 3. Вынужденные электромагнитные колебания. Дифференциальное уравнение вынужденных колебаний и его решение.
- •Вопрос 4. Резонанс напряжений и резонанс токов.
- •Тема 3. Основы теории максвелла для
- •Вопрос 2. Первое уравнение Максвелла в интегральной форме.
- •Вопрос 3. Ток смещения и второе уравнение Максвелла в интегральной форме.
- •Тема 4. Электромагнитные волны.
- •Вопрос 2. Плоская электромагнитная волна. Волновое уравнение для электромагнитного поля.
- •Вопрос 3. Энергия электромагнитных волн.
- •Вопрос 4. Давление электромагнитных волн.
- •Тема 5. Геометрическая оптика.
- •Вопрос 1. Основные законы геометрической оптики.
- •Вопрос 2. Фотометрические величины и их единицы.
- •Тема 6. Преломление света на сферических поверхностях. Тонкие линзы. Формула тонкой линзы и построение изображений предметов с помощью тонкой линзы.
- •3. Построение изображений предметов с помощью тонкой линзы.
- •Вопрос 1. Преломление и отражение света на сферических поверхностях.
- •Вопрос 2.Тонкие линзы. Формула тонкой линзы.
- •Вопрос 3. Построение изображений предметов с помощью тонкой линзы.
- •Тема 7. Световые волны.
- •Вопрос 2. Когерентные световые волны. Интерференция волн.
- •Вопрос 3. Методы наблюдения интерференции света.
- •Тема 8. Интерференция света при отражении от тонких пластинок.
- •Вопрос 1. Полосы равного наклона.
- •Вопрос 2. Полосы равной толщины.
- •Вопрос 3. Кольца Ньютона.
- •Вопрос 4. Применения явления интерференции. Просветление оптики. Интерферометры.
- •Тема 9. Дифракция света.
- •Вопрос 2. Принцип Гюйгенса-Френеля. Зоны Френеля.
- •Вопрос 3. Дифракция света на круглом экране и круглом отверстии.
- •Вопрос 4. Дифракция Фраунгофера на одной щели.
- •Тема 10. Дифракционная решетка,
- •Вопрос 2. Дифракционный спектр.
- •Вопрос 3. Дисперсия и разрешающая способность.
- •Вопрос 4. Дифракция рентгеновских лучей на кристаллической решетке.
- •Тема 11. Взаимодействие света с веществом.
- •Вопрос 2. Электронная теория дисперсии.
- •Вопрос 3. Поглощение света. Закон Бугера-Ламберта.
- •Тема 12. Поляризация света.
- •Вопрос 1. Естественный и поляризованный свет.
- •Вопрос 2. Поляризаторы. Степень поляризации. Закон Малюса.
- •Тема 13. Поляризация света при отражении и преломлении. Закон брюстера. Двойное лучепреломление. Анизотропия кристаллов.
- •Вопрос 1. Поляризация света при отражении и преломлении. Закон Брюстера.
- •Вопрос 2. Поляризация при двойном лучепреломлении. Анизотропия кристаллов.
- •Вопрос 3. Анализ поляризованного света.
- •Тема 14. Искусственное двойноелучепреломление.
- •Вопрос 2. Вращение плоскости поляризации.
- •Тема 15. Элементы специальной теории относительности
- •Вопрос 2. Постулаты специальной теории относительности.
- •Вопрос 3. Преобразования Лоренца.
- •Вопрос 4. Основные законы релятивистской динамики. Закон взаимосвязи массы и энергии.
- •Вопрос 5. Эффект Доплера для световых волн.
- •Вопрос 6. Границы применимости классической механики.
- •Тема 16. Квантовая оптика.
- •Вопрос 2. Энергетическая светимость. Излучательная, отражательная и поглощательная способность тела.
- •Вопрос 3. Абсолютно черное тело. Серое тело. Закон Кирхгофа.
- •Вопрос 4. Закон Стефана-Больцмана. Законы Вина.
- •Вопрос 5. Формула Планка.
- •Вопрос 6. Оптическая пирометрия.
- •Тема 17. Фотоэлектрический эффект.
- •Вопрос 2. Уравнение Эйнштейна для внешнего фотоэффекта Фотонная теория света. Масса, энергия и импульс фотона.
- •Вопрос 3. Однофотонный и многофотонный фотоэффект.
- •Вопрос 4. Внутренний фотоэффект.
- •Тема 18. Давление света. Эффект комптона.
- •Вопрос 2. Давление света
- •Вопрос 2. Эффект Комптона.
- •Вопрос 3. Тормозное и характеристическое рентгеновское излучение.
- •Тема 19. Атом водорода по резерфорду и бору
- •Вопрос 2. Классическая модель атома по Резерфорду.
- •Вопрос 3. Постулаты Бора и объяснение происхождения линейчатых спектров. Закономерности в атомных спектрах.
- •Вопрос 4. Теория атома водорода.
- •Вопрос 5. Виды спектров. Спектральный анализ.
- •Оптические спектры Спектры испускания
- •Полосатые спектры
- •Спектры поглощения
- •Тема 20. Гипотеза де бройля. Соотношения неопределенностей гейзенберга.
- •1. Гипотеза и формула де Бройля. Экспериментальное подтверждение гипотезы.
- •2. Соотношения неопределенностей Гейзенберга.
- •Вопрос 1. Гипотеза де Бройля и ее экспериментальное подтверждение.
- •Вопрос 2. Соотношения неопределенностей Гейзенберга.
- •Тема 21. Волноваяфункция. Уравнение шрёдингера.
- •Вопрос 2. Уравнение Шрёдингера.
- •Вопрос 3. Применение уравнения Шрёдингера к свободному электрону.
- •Вопрос 4. Частица в потенциальной яме. Квантование энергии.
- •Вопрос 5. Прохождение частицы сквозь потенциальный барьер.
- •Вопрос 6. Уравнение Шредингера для атома водорода. Векторная модель атома.
- •Тема 22. Строение атомного ядра.
- •Вопрос 2. Состав атомного ядра. Нуклоны и их взаимопревращаемость.
- •Вопрос 3. Энергия связи и устойчивость ядер.
- •Вопрос 4. Ядерные силы и их свойства.
- •Вопрос 5. Ядерные реакции
- •Тема 23. Явление радиоактивности
- •Вопрос 2. Взаимодействия радиоактивного излучения с веществом.
- •Вопрос 3. Закон радиоактивного распада. Период полураспада.
- •Вопрос 4. Единицы радиоактивности.
- •Вопрос 5. Биологическое действие ионизирующего излучения. Радиационная безопасность.
- •Тема 24. Физика лазеров.
- •Вопрос 2. Взаимодействие света с веществом.
- •Вопрос 3. Устройство лазера. Принцип действия лазера.
- •Вопрос 4. Типы лазеров.
- •Вопрос 5. Свойства и применения лазерного излучения.
Вопрос 5. Эффект Доплера для световых волн.
Эффект Доплера в акустике объяснялся тем, что частота колебаний, воспринимаемых приемником, определяется скоростями движения источника колебаний и приемника по отношению к среде, в которой происходит распространение звуковых волн. Эффект Доплера наблюдается также и при движении относительно друг друга источника и приемника световых волн. Так как особой среды, служащей носителем электромагнитных волн не существует, то частота световых волн, воспринимаемых приемником, определяется только относительной скоростью источника и приемника и является следствием преобразований Лоренца, изучаемых в специальной теории относительности.
Свяжем с приемником света начало координат системы К, а с источником – начало координат системы К' (рис.15.2).
Рис.15.2
Оси
Ох
и О´х´
направим вдоль вектора скорости
,
с которой системаК'
(т.е. источник)
движется относительно системы К (т.е.
приемника). Уравнение плоской световой
волны, испускаемой источником по
направлению к приемнику, в системе К'
будет иметь вид:
Е(х',t' ) = A' cos[ω' (t' + x'/c) + α'], (15.29)
где ω' – частота волны, фиксируемая в системе отсчета, связанной с источником, т.е. частота с которой колеблется источник.
Согласно принципу относительности законы природы имеют одинаковый вид во всех инерциальных системах отсчета, следовательно, уравнение световой волны во всех инерциальных системах отсчета описывается одинаково, и в системе К волна описывается уравнением:
Е(х,t) = Acos[ω(t + x/c) + α], (15.30)
где ω – частота, фиксируемая в системе отсчета К, т.е. частота, воспринимаемая приемником.
Уравнение волны в системе К можно получить из уравнения (15.29), перейдя от х' и t' к х и t с помощью преобразований Лоренца, заменив в (15.29) х' и t' в соответствии с преобразованием Лоренца, и, таким образом, связав частоты световых волн, излучаемых источником ω' и воспринимаемых приемником ω:
Если
источник света равномерно движется в
вакууме относительно приемника со
скоростью
,
то регистрируемая приемником частота
определяется формулой:
,
(15.31)
где
c
– скорость света в вакууме, Θ
– угол между вектором скорости
и направлением наблюдения, измеряемый
в системе отсчета, связанной с приемником
(наблюдатетем),ω0
– частота световых волн в случае
покоящихся источника и приемника,
множитель
учитывает
различный ход времени в системах,
связанных с источником и приемником.
При угле Θ = 0 или π, когда источник движется прямо к приемнику или от него, наблюдается так называемый продольный эффект Доплера:
.
(15.32)
В нерелятивистском случае, если V << с, разлагая формулу (15.32) в ряд по степеням β и пренебрегая членами порядка β2, получим:
ω = ω0 (1 - V/c) = ω0 (1 - β). (15.33)
При удалении источника и приемника друг от друга (при их положительной относительной скорости V > 0), согласно формуле (15.33), частота ω < ω0, т.е. наблюдается сдвиг длины волны регистрируемого излучения в более длинноволновую область (λ > λ0) – так называемое красное смещение. При сближении источника и приемника (при их отрицательной относительной скорости V < 0) наблюдается сдвиг в более коротковолновую область (ω > ω0, λ < λ0) – так называемое фиолетовое смещение. Продольный эффект Доплера, при котором изменение частоты излучения Δω = ω - ω0 максимально, является эффектом первого порядка относительно V/c.
Из (15.33) можно найти относительное изменение частоты:
Δω/ω = - V/c. (15.34)
Из специальной теории относительности следует, что, кроме продольного эффекта для световых волн должен существовать также поперечный эффект Доплера, наблюдаемый при движении приемника перпендикулярно линии, соединяющей его с источником (приемник движется относительно источника по окружности или наоборот). При поперечном эффекте наблюдается уменьшение частоты. В этом случае Θ = π/2 и значение частоты определяется выражением:
, (15.35)
а относительное изменение частоты при поперечном эффекте Доплера
Δω/ω = - V2 /2c2 (15.36)
пропорционально квадрату отношения V/c (эффект второго порядка) и, следовательно, значительно меньше, чем при продольном эффекте. Поэтому обнаружение поперечного эффекта Доплера связано с большими трудностями, он не наблюдается в акустике (при V << c из (15.35) следует, что ω = ω0), и является, следовательно, релятивистским эффектом. Экспериментальное обнаружение поперечного эффекта Доплера явилось одним из подтверждений справедливости теории относительности. Он был обнаружен в 1938 г. американским физиком Г. Айвсом. Как чисто релятивистский эффект, связанный с замедлением течения времени движущегося наблюдателя, он с успехом использовался для проверки соотношений специальной теории относительности.
Продольный эффект Доплера был впервые обнаружен в 1900 г. русским астрофизиком А.Белопольским и используется при исследовании атомов и молекул, а также в астрофизике при определении лучевых скоростей движения и угловых скоростей вращения космических тел. Тепловое движение молекул светящегося газа приводит вследствие эффекта Доплера к уширению спектральных линий. Распределение частиц газа по скоростям при их хаотическом тепловом движении вследствие эффекта Доплера приводит к соответствующему распределению по частотам излучения составляющих газовую среду частиц. Все направления скоростей частиц относительно приемника (спектрометра) равновероятны. Поэтому спектральные линии испытывают неоднородное доплеровское уширение, в регистрируемом излучении присутствуют все частоты, заключенные в интервале от ω0 (1 – V/c) до ω0 (1 + V/c), где ω0 – частота, излучаемая частицами, V – скорость теплового движения частиц. Таким образом, регистрируемая ширина спектральной линии составит величину
Δω = 2 ω0 V/c, (15.37)
называемую доплеровской шириной спектральной линии. По величине доплеровского уширения спектральных линий можно судить о скорости теплового движения молекул, а, следовательно, и о температуре светящегося газа.
Приборы, использующие эффект Доплера, получили широкое распространение в радиотехнике и радиолокации, например, в радиолокационных измерениях расстояний до движущихся объектов (доплеровские радары и лидары), в научных исследованиях, в медицине и т.д.