
- •Тема 1. Упругие волны.
- •Вопрос 2. Уравнение плоской волны.
- •Вопрос 3. Принцип суперпозиции волн. Групповая скорость. Стоячие волны.
- •Вопрос 4. Эффект Доплера в акустике.
- •Вопрос 5. Ультразвук. Источники и приемники ультразвуковых волн. Применение ультразвука.
- •Тема 2. Электромагнитные колебания.
- •Вопрос 2. Свободные затухающие электромагнитные колебания. Дифференциальное уравнение свободных затухающих колебаний и его решение.
- •Вопрос 3. Вынужденные электромагнитные колебания. Дифференциальное уравнение вынужденных колебаний и его решение.
- •Вопрос 4. Резонанс напряжений и резонанс токов.
- •Тема 3. Основы теории максвелла для
- •Вопрос 2. Первое уравнение Максвелла в интегральной форме.
- •Вопрос 3. Ток смещения и второе уравнение Максвелла в интегральной форме.
- •Тема 4. Электромагнитные волны.
- •Вопрос 2. Плоская электромагнитная волна. Волновое уравнение для электромагнитного поля.
- •Вопрос 3. Энергия электромагнитных волн.
- •Вопрос 4. Давление электромагнитных волн.
- •Тема 5. Геометрическая оптика.
- •Вопрос 1. Основные законы геометрической оптики.
- •Вопрос 2. Фотометрические величины и их единицы.
- •Тема 6. Преломление света на сферических поверхностях. Тонкие линзы. Формула тонкой линзы и построение изображений предметов с помощью тонкой линзы.
- •3. Построение изображений предметов с помощью тонкой линзы.
- •Вопрос 1. Преломление и отражение света на сферических поверхностях.
- •Вопрос 2.Тонкие линзы. Формула тонкой линзы.
- •Вопрос 3. Построение изображений предметов с помощью тонкой линзы.
- •Тема 7. Световые волны.
- •Вопрос 2. Когерентные световые волны. Интерференция волн.
- •Вопрос 3. Методы наблюдения интерференции света.
- •Тема 8. Интерференция света при отражении от тонких пластинок.
- •Вопрос 1. Полосы равного наклона.
- •Вопрос 2. Полосы равной толщины.
- •Вопрос 3. Кольца Ньютона.
- •Вопрос 4. Применения явления интерференции. Просветление оптики. Интерферометры.
- •Тема 9. Дифракция света.
- •Вопрос 2. Принцип Гюйгенса-Френеля. Зоны Френеля.
- •Вопрос 3. Дифракция света на круглом экране и круглом отверстии.
- •Вопрос 4. Дифракция Фраунгофера на одной щели.
- •Тема 10. Дифракционная решетка,
- •Вопрос 2. Дифракционный спектр.
- •Вопрос 3. Дисперсия и разрешающая способность.
- •Вопрос 4. Дифракция рентгеновских лучей на кристаллической решетке.
- •Тема 11. Взаимодействие света с веществом.
- •Вопрос 2. Электронная теория дисперсии.
- •Вопрос 3. Поглощение света. Закон Бугера-Ламберта.
- •Тема 12. Поляризация света.
- •Вопрос 1. Естественный и поляризованный свет.
- •Вопрос 2. Поляризаторы. Степень поляризации. Закон Малюса.
- •Тема 13. Поляризация света при отражении и преломлении. Закон брюстера. Двойное лучепреломление. Анизотропия кристаллов.
- •Вопрос 1. Поляризация света при отражении и преломлении. Закон Брюстера.
- •Вопрос 2. Поляризация при двойном лучепреломлении. Анизотропия кристаллов.
- •Вопрос 3. Анализ поляризованного света.
- •Тема 14. Искусственное двойноелучепреломление.
- •Вопрос 2. Вращение плоскости поляризации.
- •Тема 15. Элементы специальной теории относительности
- •Вопрос 2. Постулаты специальной теории относительности.
- •Вопрос 3. Преобразования Лоренца.
- •Вопрос 4. Основные законы релятивистской динамики. Закон взаимосвязи массы и энергии.
- •Вопрос 5. Эффект Доплера для световых волн.
- •Вопрос 6. Границы применимости классической механики.
- •Тема 16. Квантовая оптика.
- •Вопрос 2. Энергетическая светимость. Излучательная, отражательная и поглощательная способность тела.
- •Вопрос 3. Абсолютно черное тело. Серое тело. Закон Кирхгофа.
- •Вопрос 4. Закон Стефана-Больцмана. Законы Вина.
- •Вопрос 5. Формула Планка.
- •Вопрос 6. Оптическая пирометрия.
- •Тема 17. Фотоэлектрический эффект.
- •Вопрос 2. Уравнение Эйнштейна для внешнего фотоэффекта Фотонная теория света. Масса, энергия и импульс фотона.
- •Вопрос 3. Однофотонный и многофотонный фотоэффект.
- •Вопрос 4. Внутренний фотоэффект.
- •Тема 18. Давление света. Эффект комптона.
- •Вопрос 2. Давление света
- •Вопрос 2. Эффект Комптона.
- •Вопрос 3. Тормозное и характеристическое рентгеновское излучение.
- •Тема 19. Атом водорода по резерфорду и бору
- •Вопрос 2. Классическая модель атома по Резерфорду.
- •Вопрос 3. Постулаты Бора и объяснение происхождения линейчатых спектров. Закономерности в атомных спектрах.
- •Вопрос 4. Теория атома водорода.
- •Вопрос 5. Виды спектров. Спектральный анализ.
- •Оптические спектры Спектры испускания
- •Полосатые спектры
- •Спектры поглощения
- •Тема 20. Гипотеза де бройля. Соотношения неопределенностей гейзенберга.
- •1. Гипотеза и формула де Бройля. Экспериментальное подтверждение гипотезы.
- •2. Соотношения неопределенностей Гейзенберга.
- •Вопрос 1. Гипотеза де Бройля и ее экспериментальное подтверждение.
- •Вопрос 2. Соотношения неопределенностей Гейзенберга.
- •Тема 21. Волноваяфункция. Уравнение шрёдингера.
- •Вопрос 2. Уравнение Шрёдингера.
- •Вопрос 3. Применение уравнения Шрёдингера к свободному электрону.
- •Вопрос 4. Частица в потенциальной яме. Квантование энергии.
- •Вопрос 5. Прохождение частицы сквозь потенциальный барьер.
- •Вопрос 6. Уравнение Шредингера для атома водорода. Векторная модель атома.
- •Тема 22. Строение атомного ядра.
- •Вопрос 2. Состав атомного ядра. Нуклоны и их взаимопревращаемость.
- •Вопрос 3. Энергия связи и устойчивость ядер.
- •Вопрос 4. Ядерные силы и их свойства.
- •Вопрос 5. Ядерные реакции
- •Тема 23. Явление радиоактивности
- •Вопрос 2. Взаимодействия радиоактивного излучения с веществом.
- •Вопрос 3. Закон радиоактивного распада. Период полураспада.
- •Вопрос 4. Единицы радиоактивности.
- •Вопрос 5. Биологическое действие ионизирующего излучения. Радиационная безопасность.
- •Тема 24. Физика лазеров.
- •Вопрос 2. Взаимодействие света с веществом.
- •Вопрос 3. Устройство лазера. Принцип действия лазера.
- •Вопрос 4. Типы лазеров.
- •Вопрос 5. Свойства и применения лазерного излучения.
Тема 13. Поляризация света при отражении и преломлении. Закон брюстера. Двойное лучепреломление. Анизотропия кристаллов.
Вопросы:
Поляризация света при отражении и преломлении.
Закон Брюстера.
Поляризация при двойном лучепреломлении. Анизотропия кристаллов.
Анализ поляризованного света.
Вопрос 1. Поляризация света при отражении и преломлении. Закон Брюстера.
Пусть на границу раздела двух диэлектриков падает луч естественного света (например, из воздуха на поверхность стеклянной пластинки). Если угол падения света отличен от нуля, то отраженный и преломлённый лучи оказываются частично поляризованными. В отражённом луче преобладают колебания, перпендикулярные к плоскости падения (на рис.13.1 эти колебания обозначены точками), в преломлённом луче –колебания, параллельные плоскости падения (на рис.13.1 они изображены двусторонними стрелками). Степень поляризации зависит от угла падения.
а) б)
Рис.13.1.
Обозначим через αБ угол, удовлетворяющий условию:
tgαБ = n21,
где n21 - показатель преломления второй среды относительно первой. При угле падения α = αБ отраженный луч полностью поляризован (он содержит только колебания вектора напряженности электрического поля, перпендикулярные к плоскости падения). Степень поляризации преломленного луча при угле падения, равном углу αБ, достигает наибольшего значения, однако этот луч остается поляризованный только частично.
Соотношение tgαБ = n21 носит название закона Брюстера, а угол αБ называется углом Брюстера. При падении света под углом Брюстера отраженный и преломленный лучи взаимно перпендикулярны.
Степень поляризации и интенсивность отраженного и преломленного лучей при различных углах падения можно получить с помощью формул Френеля, которые выводятся из уравнений Максвелла для электромагнитного поля.
Степень поляризации преломленного луча можно значительно увеличить, если использовать многократное преломление его на границах раздела нескольких пластинок диэлектрика, сложенных в стопу.
Вопрос 2. Поляризация при двойном лучепреломлении. Анизотропия кристаллов.
При прохождении естественного света через все прозрачные кристаллы (за исключением кристаллов, принадлежащих к кубической системе, которые оптически изотропны) наблюдается явление, получившее название двойного лучепреломления. Это явление заключается в том, что упавший на кристалл луч естественного света разделяется внутри кристалла на два линейно поляризованных луча одинаковой интенсивности, распространяющиеся с разными скоростями и в различных направлениях, рис. 13.2.
а) б)
Рис.13.2.
Кристаллы, обладающие двойным лучепреломлением, подразделяются на одноосные и двуосные. У одноосных кристаллов один из преломленных лучей подчиняется обычному закону преломления. Он лежит в одной плоскости с падающим лучом и нормалью к преломляющей поверхности, восстановленной в точке падения. Этот луч называется обыкновенным и обозначается буквой о. Для другого луча, который называется необыкновенным и обозначается буквой е, отношение синусов угла падения и угла преломления, не остается постоянным при изменении угла падения. Кроме того, необыкновенный луч не лежит, как правило, в одной плоскости с падающим лучом и нормалью к преломляющей поверхности. Даже при нормальном падении света на кристалл необыкновенный луч отклоняется от нормали, рис.13.2б. Примерами одноосных кристаллов могут служить исландский шпат, кварц и турмалин, а двуосных кристаллов - слюда, гипс. У двуосных кристаллов оба луча необыкновенные - показатели преломления для них зависят от направления распространения света в кристалле. У одноосных кристаллов имеется направление, вдоль которого обыкновенный и необыкновенный лучи распространяются не разделяясь и с одинаковой скоростью. У двуосных кристаллов имеется два таких направления. Такие направления в кристалле называются оптической осью кристалла. Оптическая ось – это определенное направление в кристалле и любая прямая, параллельная данному направлению, является оптической осью.
Любая плоскость, проходящая через оптическую ось, называется главным сечением или главной плоскостью кристалла. Обычно пользуются главным сечением, проходящим через световой луч.
Обыкновенный
и необыкновенный лучи полностью
поляризованы
во
взаимно перпендикулярных, направлениях
(рис.13.2).
Плоскость колебаний вектора
напряженности электрического поля
световой волны
обыкновенного луча
перпендикуляра к главному сечению
кристалла. В необыкновенном луче
колебания вектора
совершаются в плоскости, совпадающей
с главным сечением. По выходе из кристалла
оба луча
отличаются друг от друга направлением
поляризации и направлением распространения.
В некоторых кристаллах один из лучей поглощается сильнее другого. Это явление называется дихроизмом. Сильным дихроизмом для видимого света обладает турмалин, в котором обыкновенный луч практически полностью поглощается на длине около 1 мм. В кристаллах сульфата йодистого хинина один из лучей поглощается на пути примерно в 0,1 мм. Это свойство используется для изготовления поляроидов, представляющих собой целлулоидную пленку, в которую введено большое количество одинаково ориентированных кристаллов сульфата йодистого хинина.
Явление
двойного лучепреломления объясняется
анизотропией кристаллов. В кристаллах
некубической системы диэлектрическая
проницаемость e
оказывается зависящей
от направления. В одноосных кристаллах
e
в направлении оптической оси и в
направлениях,
перпендикулярных к ней имеет различные
значения eêê
и e^.
В других направлениях
e
имеет промежуточные значения. Поскольку
показатель преломления вещества n
=
,следовательно,
из анизотропии e
вытекает, что электромагнитным волнам
с различными направлениями колебаний
вектора
соответствуют
разные значения n.
Значит, скорость
световых волн зависит от направления
колебаний светового вектора
.
Одноосные кристаллы характеризуются показателями преломления обыкновенного луча no = c/Vo и необыкновенного луча ne = с/Vе. В зависимости от того, какая из скоростей Vo или Vе больше, различают положительные и отрицательные одноосные кристаллы. У положительных кристаллов Vе меньше Vo, значит ne > no.
Ход обыкновенного и необыкновенного лучей в кристалле можно определить с помощью принципа Гюйгенса.