
- •Тема 1. Упругие волны.
- •Вопрос 2. Уравнение плоской волны.
- •Вопрос 3. Принцип суперпозиции волн. Групповая скорость. Стоячие волны.
- •Вопрос 4. Эффект Доплера в акустике.
- •Вопрос 5. Ультразвук. Источники и приемники ультразвуковых волн. Применение ультразвука.
- •Тема 2. Электромагнитные колебания.
- •Вопрос 2. Свободные затухающие электромагнитные колебания. Дифференциальное уравнение свободных затухающих колебаний и его решение.
- •Вопрос 3. Вынужденные электромагнитные колебания. Дифференциальное уравнение вынужденных колебаний и его решение.
- •Вопрос 4. Резонанс напряжений и резонанс токов.
- •Тема 3. Основы теории максвелла для
- •Вопрос 2. Первое уравнение Максвелла в интегральной форме.
- •Вопрос 3. Ток смещения и второе уравнение Максвелла в интегральной форме.
- •Тема 4. Электромагнитные волны.
- •Вопрос 2. Плоская электромагнитная волна. Волновое уравнение для электромагнитного поля.
- •Вопрос 3. Энергия электромагнитных волн.
- •Вопрос 4. Давление электромагнитных волн.
- •Тема 5. Геометрическая оптика.
- •Вопрос 1. Основные законы геометрической оптики.
- •Вопрос 2. Фотометрические величины и их единицы.
- •Тема 6. Преломление света на сферических поверхностях. Тонкие линзы. Формула тонкой линзы и построение изображений предметов с помощью тонкой линзы.
- •3. Построение изображений предметов с помощью тонкой линзы.
- •Вопрос 1. Преломление и отражение света на сферических поверхностях.
- •Вопрос 2.Тонкие линзы. Формула тонкой линзы.
- •Вопрос 3. Построение изображений предметов с помощью тонкой линзы.
- •Тема 7. Световые волны.
- •Вопрос 2. Когерентные световые волны. Интерференция волн.
- •Вопрос 3. Методы наблюдения интерференции света.
- •Тема 8. Интерференция света при отражении от тонких пластинок.
- •Вопрос 1. Полосы равного наклона.
- •Вопрос 2. Полосы равной толщины.
- •Вопрос 3. Кольца Ньютона.
- •Вопрос 4. Применения явления интерференции. Просветление оптики. Интерферометры.
- •Тема 9. Дифракция света.
- •Вопрос 2. Принцип Гюйгенса-Френеля. Зоны Френеля.
- •Вопрос 3. Дифракция света на круглом экране и круглом отверстии.
- •Вопрос 4. Дифракция Фраунгофера на одной щели.
- •Тема 10. Дифракционная решетка,
- •Вопрос 2. Дифракционный спектр.
- •Вопрос 3. Дисперсия и разрешающая способность.
- •Вопрос 4. Дифракция рентгеновских лучей на кристаллической решетке.
- •Тема 11. Взаимодействие света с веществом.
- •Вопрос 2. Электронная теория дисперсии.
- •Вопрос 3. Поглощение света. Закон Бугера-Ламберта.
- •Тема 12. Поляризация света.
- •Вопрос 1. Естественный и поляризованный свет.
- •Вопрос 2. Поляризаторы. Степень поляризации. Закон Малюса.
- •Тема 13. Поляризация света при отражении и преломлении. Закон брюстера. Двойное лучепреломление. Анизотропия кристаллов.
- •Вопрос 1. Поляризация света при отражении и преломлении. Закон Брюстера.
- •Вопрос 2. Поляризация при двойном лучепреломлении. Анизотропия кристаллов.
- •Вопрос 3. Анализ поляризованного света.
- •Тема 14. Искусственное двойноелучепреломление.
- •Вопрос 2. Вращение плоскости поляризации.
- •Тема 15. Элементы специальной теории относительности
- •Вопрос 2. Постулаты специальной теории относительности.
- •Вопрос 3. Преобразования Лоренца.
- •Вопрос 4. Основные законы релятивистской динамики. Закон взаимосвязи массы и энергии.
- •Вопрос 5. Эффект Доплера для световых волн.
- •Вопрос 6. Границы применимости классической механики.
- •Тема 16. Квантовая оптика.
- •Вопрос 2. Энергетическая светимость. Излучательная, отражательная и поглощательная способность тела.
- •Вопрос 3. Абсолютно черное тело. Серое тело. Закон Кирхгофа.
- •Вопрос 4. Закон Стефана-Больцмана. Законы Вина.
- •Вопрос 5. Формула Планка.
- •Вопрос 6. Оптическая пирометрия.
- •Тема 17. Фотоэлектрический эффект.
- •Вопрос 2. Уравнение Эйнштейна для внешнего фотоэффекта Фотонная теория света. Масса, энергия и импульс фотона.
- •Вопрос 3. Однофотонный и многофотонный фотоэффект.
- •Вопрос 4. Внутренний фотоэффект.
- •Тема 18. Давление света. Эффект комптона.
- •Вопрос 2. Давление света
- •Вопрос 2. Эффект Комптона.
- •Вопрос 3. Тормозное и характеристическое рентгеновское излучение.
- •Тема 19. Атом водорода по резерфорду и бору
- •Вопрос 2. Классическая модель атома по Резерфорду.
- •Вопрос 3. Постулаты Бора и объяснение происхождения линейчатых спектров. Закономерности в атомных спектрах.
- •Вопрос 4. Теория атома водорода.
- •Вопрос 5. Виды спектров. Спектральный анализ.
- •Оптические спектры Спектры испускания
- •Полосатые спектры
- •Спектры поглощения
- •Тема 20. Гипотеза де бройля. Соотношения неопределенностей гейзенберга.
- •1. Гипотеза и формула де Бройля. Экспериментальное подтверждение гипотезы.
- •2. Соотношения неопределенностей Гейзенберга.
- •Вопрос 1. Гипотеза де Бройля и ее экспериментальное подтверждение.
- •Вопрос 2. Соотношения неопределенностей Гейзенберга.
- •Тема 21. Волноваяфункция. Уравнение шрёдингера.
- •Вопрос 2. Уравнение Шрёдингера.
- •Вопрос 3. Применение уравнения Шрёдингера к свободному электрону.
- •Вопрос 4. Частица в потенциальной яме. Квантование энергии.
- •Вопрос 5. Прохождение частицы сквозь потенциальный барьер.
- •Вопрос 6. Уравнение Шредингера для атома водорода. Векторная модель атома.
- •Тема 22. Строение атомного ядра.
- •Вопрос 2. Состав атомного ядра. Нуклоны и их взаимопревращаемость.
- •Вопрос 3. Энергия связи и устойчивость ядер.
- •Вопрос 4. Ядерные силы и их свойства.
- •Вопрос 5. Ядерные реакции
- •Тема 23. Явление радиоактивности
- •Вопрос 2. Взаимодействия радиоактивного излучения с веществом.
- •Вопрос 3. Закон радиоактивного распада. Период полураспада.
- •Вопрос 4. Единицы радиоактивности.
- •Вопрос 5. Биологическое действие ионизирующего излучения. Радиационная безопасность.
- •Тема 24. Физика лазеров.
- •Вопрос 2. Взаимодействие света с веществом.
- •Вопрос 3. Устройство лазера. Принцип действия лазера.
- •Вопрос 4. Типы лазеров.
- •Вопрос 5. Свойства и применения лазерного излучения.
Тема 7. Световые волны.
Вопросы:
1. Развитие представлений о природе света.
2. Когерентные световые волны. Интерференция волн.
3. Методы наблюдения интерференции света.
Вопрос 1. Развитие представлений о природе света.
Свет представляет собой сложное явление: в одних случаях он ведет себя как электромагнитная волна, в других - как поток особых частиц (фотонов). Длительный путь развития учения о свете привел к современным представлениям о двойственной корпускулярно-волновой природе света. Рассмотрим вначале круг явлений, в основе которых лежит волновая природа света.
Теоретические исследования Максвелла о распространении электромагнитных волн, экспериментальные измерения скорости их распространения в вакууме, оказавшейся равной скорости распространения световых волн в вакууме, и другие исследования позволили выдвинуть предположение о чисто электромагнитной природе света.
Электромагнитная теория света явилась существенным шагом вперед в понимании природы оптических явлений. Свет оказался частным случаем электромагнитных волн с длиной волны от = 400 нм (фиолетовый) до =760 нм (красный). Только этот интервал длин электромагнитных волн оказывает непосредственное воздействие на наш глаз и является собственно светом. Однако и более коротковолновое (<400 нм - ультрафиолетовое) и более длинноволновое оптическое излучение (>760 нм - инфракрасное) имеют качественно одну и ту же электромагнитную природу и отличаются лишь методами их возбуждения и обнаружения.
В веществе длины световых волн будут иными, чем в вакууме. Частоте колебаний в вакууме соответствует длина волны 0 = c/. В среде, в которой фазовая скорость световой волны V = с/n, длина волны имеет значение:
= V = c/n =0/n.
В
электромагнитной волне колеблются
вектора
и
,
причем
.
На рис.7.1 показано взаимное
расположение
векторов
и
в световой волне.
Как
показывает опыт,
физиологическое, фотохимическое,
фотоэлектрическое и другие действия
света вызываются
колебаниями вектора напряженности
электрического поля ,
о котором говорят поэтому как о световом
векторе. Магнитный
вектор
световой волны для описания действия
света практически не используется.
Рис.7.1.
Модуль амплитуды светового вектора мы будем обозначать буквой А (иногда Ем). Соответственно изменение во времени и пространстве проекции светового вектора на направление, вдоль которого он колеблется, будет описываться уравнением:
E = Acos(ωt – kr +α),
которое называется уравнением световой волны, где k - волновое число
(k = 2), r – расстояние, отсчитываемое вдоль направления распространения световой волны. Для плоской световой волны, распространяющейся в непоглощающей среде, А = const, для сферической волны амплитуда А убывает как 1/r и т.д.
Частоты видимых световых волн лежат в пределах = (3,9 - 7,5) 1014 Гц.
Частота изменений плотности потока энергии, переносимой волной, будет еще больше (она равна 2). Уследить за столь быстрыми изменениями потока энергии не могут ни глаз, ни приборы, вследствие чего они регистрируют усредненный по времени поток переносимой энергии.
Интенсивность
света
I
в
данной точке
пространства равна плотности потока
электромагнитной энергии и определяется
модулем вектора
Умова-Пойтинга
I=|<>=
|<
>|.
.
Поскольку
для электромагнитной волны Е
~ Н,
то интенсивность света пропорциональна
квадрату амплитуды светового вектора
,
т.е.
I
~
А2.
В
изотропных средах направление
распространения
световой энергии (луча)
совпадает с нормалью к волновой
поверхности, т.е. с направлением волнового
вектора
.
Модуль
= k
– волновое число.
Несмотря
на то, что световые волны поперечны, они
не обнаруживают асимметрии
относительно луча. Это обусловлено тем,
что в естественном свете имеются
колебания вектора
,
совершающиеся в самых различных
направлениях, перпендикулярных
к лучу. Излучение светящегося тела
слагается из волн, испускаемых
его атомами. Эти волны, налагаясь друг
на друга, образуют испускаемую
телом световую волну. В результирующей
волне колебания вектора
различных направлений представлены с
равной вероятностью.
В
естественном свете колебания различных
направлений быстро и беспорядочно
сменяют друг друга. Свет,
в котором направления колебаний вектора
упорядочены
каким-либо образом, называется
поляризованным.
Если колебания светового
вектора происходят только в одной
проходящей через луч плоскости, свет
называется плоско-
(или линейно-)
поляризованным.
Упорядоченность колебаний может
заключаться в том, что вектор
поворачивается вокруг луча, одновременно
пульсируя
по величине. В результате конец вектора
описывает эллипс. Такой свет называется
эллиптически
- поляризованным.
Если конец вектора
описывает окружность,
свет называется поляризованным
по кругу.