
- •1)Классификация средств подвижной связи. Краткая характеристика
- •1.2)Системы персонального радиовызова.
- •1.3)Системы бесшнуровой телефонии.
- •1.4)Транкинговые системы.
- •1.5) Сотовая телефония.
- •1.6) Спутниковые системы персональной радиосвязи.
- •1.7) Системы беспроводного доступа к локальным вычислительным сетям.
- •2) Сотовые сети связи с подвижными объектами.
- •2.5) Принципы организации связи и повторного использования частот.
- •2.4) Частотно-территориальное планирование регулярных сотовых сетей связи.
- •3) Модель цифровой системы связи. Цифровая модуляция в системах подвижной связи.
- •3.1) Краткая характеристика основных составляющих модели.
- •3.2) Понятия «созвездие», «эквивалентный модулирующий сигнал».
- •3.3) Типы цифровой модуляции, применяемые в подвижной связи (подробное описание в 3.4-3.6)
- •3.4) Модулятор fsk. Гауссовская манипуляция с минимальным частотным сдвигом – gmsk.
- •3.5) Квадратурная фазовая манипуляция – qpsk, oqpsk.
- •3.6) Многочастотная модуляция
- •4)Демодуляция в цифровых системах спрс
- •4.1) Когерентный, некогерентный прием сигнала.
- •4.2) Схема оптимального синхронного приемника сигналов qpsk.
- •4.3) Некогерентный оптимальный fsk-приемник.
- •5) Широкополосные спрс. Расширение спектра средств подвижной связи.
- •5.1) Предпосылки перехода к широкополосным спрс.
- •5.2) Основные свойства и типы псевдослучайных последовательностей (псп), используемых в широкополосных системах; m-последовательности; каскадный сдвиговый регистр с линейными обратными связями (lfsr).
- •5.3) Методы расширения спектра (подробнее в 5.4 и 5.5)
- •5.4) Схемы электрические структурные расширения спектра прямым методом (dsss).
- •5.5) Схемы электрические структурные расширения спектра скачками по частоте (fhss).
- •5.6) Схемы электрические структурные расширения спектра с (псевдослучайной) перестройкой во времени (thss ss).
- •6) Стандарт сотовой связи gsm.
- •6.1) Основные определения и термины для сотовых систем связи (ссс).
- •6.2) Основные мировые стандарты ссс. Понятие о поколениях ссс.
- •Классификация систем 2-го поколения
- •6.3) Понятие о сетях с макросотовой, микросотовой и пикосотовой структурой.
- •6.4) Стандарт gsm и его разновидности. Частотный план gsm. Фазы развития gsm.
- •6.6) Канальное кодирование. Шифрование. Перемежение блоков.
- •Шифрование
- •6.7) Кадры tdma
- •Перескоки частоты (Slow frequency hopping).
- •6.8) Адаптивная эквализация (Adaptive Equalization). Временное опережение передачи
- •Временное опережение передачи
- •6.9) Скорость передачи и метод модуляции в gsm
- •7) Канальная структура в gsm.
- •7.4) Расположение каналов управления в структуре tdma.
- •7.6) Географическая структура сети. Нумерация и идентификация в сети.
- •Основные идентификаторы и номераGsm
- •Аутентификация
- •Определение местоположения
- •7.7) Процедуры установления соединений. Cхемы алгоритмов установления соединений.
- •7.8) Процедуры передачи мобильных станций на обслуживание (handover).
- •7.9)Оценка параметров канала
- •8) Службы gsm, передача sms и данных.
- •8.1) Службы-носители и телеслужбы.
- •8.2) Организация sms(short message service)
- •8.3) Варианты мобилизации ресурсов системы. Hscsd, gprs, edge.
- •Разнесение антенн (Antenna Diversity)
- •Антенные комбайнеры
- •Антенны bts
- •9) Бесшнуровая телефония.
- •СистемаDect
- •Архитектура системы
- •Физический уровень
- •9.3) Структура частотно-временного кадра mc-tdma- tdd. Работа совместно с gsm.
- •10) Сотовые сети стандарта cdma.
- •10.1) Общая характеристика системы.
- •10.2) Канальное кодирование. Параметры кодовых последовательностей в стандарте is-95.
- •10.3) Схема обработки сигналов в передающем тракте базовой станции.
- •10.4) Схема обработки сигналов в передающем тракте подвижной станции.
- •10.5) Управления мощностью.
- •10.2) Канальное кодирование. Параметры кодовых последовательностей в стандарте is-95.
- •10.6) Конфигурация системы стандарта cdma. Конфигурация сети стандарта cdma
- •10.7) Организация каналов в стандарте cdma.
- •10.8) Логические каналы линии «вниз». Структурные схемы каналов.
- •10.9) Логические каналы линии «вверх». Общая структура обратного канала связи системы is-95. Структурные схемы каналов.
- •Канал доступа
- •10.10) Обслуживание вызова в сетях стандарта cdma.
- •10.11) Организация эстафетной передачи
- •11) Мобильная связь третьего поколения.
- •11.1) Общая концепция мобильной связи третьего поколения и основные параметры.
- •Общая характеристика и основные параметры
- •11.2) Основные модификации cdmaOne.
- •11.3) Эволюция стандарта is-95 в cdma2000. Принципы построения и архитектура. Отличительные особенности.
- •11.4) Структура сети стандарта cdma2000. Варианты mc-cdma и ds-cdma.
- •11.5) Канальная структура cdma2000.
- •Архитектура сети радиодоступа
- •11.7) Архитектура сети радиодоступа. Архитектура utran.
- •11.8) Логические, транспортные и физические каналы.
- •Выделенные физический каналы линии «вверх»
- •11.9) Канализирующие коды линии «вверх»
- •12) Технология lte.
- •12.1) Общая характеристика. Особенности технологии.
- •12.2) Основные функциональные элементы сети. Архитектура sae.
- •12.3) Принципы построения радиоинтерфейса по технологии lte. Радиоинтерфейс lte.
- •13) Технология Wi-Fi.
- •13.1) Протоколы.
- •13.2) Применение технологии Wi-Fi. Создания беспроводных локальных сетей.
- •13.3) Организация доступа к Интернету.
- •14) Технология Bluetooth.
- •14.1) Радиоинтерфейс
- •14.2) Организация связи
- •14.3) Типы физических каналов
9.3) Структура частотно-временного кадра mc-tdma- tdd. Работа совместно с gsm.
Система DECTможет использоваться совместно с сотовой системойGSM. Для этого применяются специальные двухсистемныеMS, обеспечивающие межсистемный роуминг по типичной схеме: в офисе –DECT, в автомобиле –GSM.
Взаимодействие на сетевом уровне показано на рисунке 9.1. FPиграют роль базовых станций, образующих пикосоты на сотахGSM.DFSиIWUвыполняют функции контроллера базовых станций. По А-интерфейсуIWUвзаимодействует с мобильным коммутаторомGSM.
|
Рисунок 9.1 – Взаимодействие DECT и GSM
|
10) Сотовые сети стандарта cdma.
10.1) Общая характеристика системы.
В методе CDMAбольшая группа пользователей (например, от 30 до 50), одновременно использует общую относительно широкую полосу частот (не менее 1 МГц). Каналы трафика при таком способе разделения среды создаются присвоением каждому пользователю отдельного кода, который распространяется по всей ширине полосы. В данном случае не существует временного разделения, и все абоненты постоянно используют всю ширину канала. Вещание абонентов накладывается друг на друга, но поскольку их коды отличаются, они могут быть легко дифференцированы. Как иTDMA, методCDMAможет быть реализован только в цифровой форме.
Основные принципы метода - расширение спектра за счет модуляции ПСП в сочетании с кодовым разделением физических каналов - определяют и общие достоинства методе CDMA: высокую помехоустойчивость, хорошую приспособленность к условиям многолучевого распространения, высокую емкость системы.
В CDMAрегулировка уровней сигналов, применение секторных антенн на БС и использование принципа «речевой активности» (станция излучает лишь тогда, когда абонент говорит, и не излучает в паузах речи), оперативное изменение числа задействованных каналов связи в пределах имеющегося ресурса позволяет практически реализовать предельно малое допустимое отношение сигнал/помеха, т.е. получить предельно большие пропускную способность и емкость системы. Это технические особенностиCDMAобеспечивают высокие характеристики метода. С другой стороны, их реализация достаточно сложна.
В методе нет частотного планирования, во всех ячейках используется одна и та же полоса частот. Если, в терминах разработки Qualcomm, подCDMAотведена полоса более широкая чем минимально необходимые 1,23 МГц, то каждый из поддиапазонов в 1,23 МГц используется во всех ячейках с однотипной организацией работы во всех поддиапазонах. При этом в качестве коэффициента эффективности повторного использования частот указывается величина порядка 2/3, т.е. вследствие помех от других ячеек число используемых в каждой ячейке каналов снижается в 1,5 раза по сравнению с одной изолированной ячейкой (эти коэффициенты аналогичны соответственно 1/7 и 7 в 7-ячеечном кластере методовFDMAиTDMA).
В методе CDMAреализуется «мягкая передача обслуживания». Когда ПС приближается к границе ячейки, т.е. сигналы от двух БС (рабочей ячейки и одной из смежных) становятся соизмеримыми по уровню, по команде с ЦК через БС смежной ячейки организуется второй канал связи с той же ПС; при этом первый канал (в «старой» ячейке) продолжает работать, т.е. ПС принимает сигналы одновременно от двух БС, используя технические возможности рейк-приемника. Так продолжается до тех пор, пока ПС не удалится от границы ячеек, т.е. пока сигнал от второй БС не станет существенно сильнее сигнала от первой. После этого канал связи через первую БС закрывается, и процесс передачи обслуживания завершается.
Метод CDMAтребует точной синхронизации БС системы. Это может быть реализовано, например, при помощи спутниковой геодезической системыGPS, но в результате ССС оказывается не автономной.
В методе CDMAнет защитных интервалов (бланков), как в методеTDMA, а большое число знаков в используемых кодовых последовательностях облегчает сохранение конфиденциальности передаваемой информации. Высокая помехоустойчивостьCDMAи распределение энергии по широкой полосе частот допускают совместную сCDMAработу некоторого числа узкополосных каналов связи в пределах той же широкой полосы при относительно небольшом уровне взаимных помех.
Метод CDMAобладает сравнительно высокой помехоустойчивостью и хорошо работает в условиях многолучевого распространения. Кроме того, он отличается высокой скрытностью, не использует частотного планирования, допускает «мягкую передачу обслуживания», но все это требует обязательного использования достаточно сложных технических решений: аккуратной регулировки уровня сигналов, применения секторных антенн и отработки «речевой активности», точной синхронизации БС, причем последнее может быть связано с потерей автономности системы.
В качестве оценки емкости системы, в терминах эквивалентного числа физических каналов на ячейку, иногда приводят коэффициент увеличения порядка 20 в сравнении с методом FDMAстандартаAMPS. Если учесть, что переход отFDMAкTDMAувеличивает число физических каналов в три раза, а при полускоростном кодировании в шесть раз, получается, что переход отTDMAкCDMAможет обеспечить примерно трехкратное увеличение числа каналов.
Однако фактически возможно более сильное влияние помех в CDMA, чем принималось в расчетах, а также в некоторых ситуациях может возникнуть необходимость более плотного расположения БС. Эти факторы ведут к снижению емкости системы. Кроме того, методTDMAимеет дополнительные возможности: скачки по частоте (предусмотренные, в частности, стандартомGSM), которые, в сочетании с прерывистым излучением (отработкой «речевой активности») и оперативной регулировкой мощности излучения, смягчают влияние релеевских замираний и снижают средний уровень помех, т.е. позволяют реализовать большие значения коэффициента повторного использования частот. К той же цели ведет и использование адаптивного распределения каналов, в том числе в сотовых сетях иерархической структуры; в отношении построения последнихTDMAимеет преимущества по сравнению сCDMA. В результате методыCDMAиTDMAоказываются примерно сопоставимыми по обеспечиваемой ими емкости.