
- •Электронный вариант конспекта по дисциплине «Техническая электроника»
- •Электропроводность полупроводников.
- •Собственная электропроводность п/п.
- •Основы квантовой статистики
- •Примесные п/п.
- •Электронно-дырочный переход
- •Физические процессы в симметричном р-n – переходе
- •Условия равновесия
- •Изменение концентрации зарядов в р-n – переходе
- •Плотность диффузионного тока.
- •Плотность дрейфового тока. Дырочный ток.
- •Ширина запирающего слоя (зс)
- •Различные виды переходов Несимметричный переход
- •Контакт металл - п/п Контакт Ме – n-п/п
- •Контакт Ме – п/п p-типа
- •Пробой p-n-перехода.
- •Ёмкости p-n-перехода
- •Полупроводниковые диоды Устройство и классификация п/п диодов
- •Вах диода
- •Статические параметры диодов
- •Зависимость характеристики и параметров диодов от температуры
- •Выпрямительные диоды
- •Параметры вд
- •Параллельное соединение диодов
- •Последовательное включение диодов
- •Особенности германиевых и кремниевых вд
- •Импульсные диоды
- •Стабилитроны и стабисторы
- •Варикапы
- •Транзисторы
- •Биполярные транзисторы
- •Режимы работы.
- •Токи в транзисторе
- •Схемы включения биполярного транзистора
- •Транзистор как чп
- •Параметры бт в схеме с об
- •Параметры бт в схеме оэ
- •Параметры бт в схеме с ок
- •Режим большого сигнала
- •Особенности транзисторов на вч при малых сигналах
- •Эквивалентная схема транзистора
- •Полевые транзисторы
- •Транзисторы, управляемые с помощью p-nперехода или барьера Шоттки
- •Пт с изолированным затвором.
- •Принцип работы пт с индуцированным каналом.
- •Пт со встроенным каналом.
- •Приборы с отрицательным сопротивлением
- •Туннельный диод
- •Токи в тд
- •Тиристоры
- •Динисторы. Переход п2 обычно считается коллекторным переходом. Динисторы можно рассматривать как два включённых навстречу друг другу транзистора.
- •Iвыкл III
- •Тринисторы
- •Симисторы
- •Фотоэлектронные приборы
- •Фотоэлемент
- •Светодиоды
- •Диод Устройство и принцип действия
- •Статические параметры диода
- •Предельные параметры диода
- •Устройство и принцип действия триодов
- •Статические параметры триода
- •Тетроды
- •Пентоды
- •Электронно-лучевые приборы
- •Принципы управления электронным лучом
- •Осциллографические трубки с электростатической фокусировкой и отклонением
- •Приложение 1: «Телевизоры на жк-панелях»
- •Шумы электронных приборов общие положения
- •Шумы транзисторов
- •Надежность электронных приборов
- •Анализ процесса усиления электрических сигналов
- •Принципы усиления электрических сигналов
- •Точка покоя. Напряжение смещения
- •Работа уэ с нагрузкой. Динамические характеристики уравнение нагрузочного режима
- •Нагрузочные линии усилителя и их построение
- •Сквозная характеристика усилителя на биполярном транзисторе
- •Схемы подачи смещения на вход полевого транзистора
- •Режимы работы усилительных элементов
- •Резисторный каскад
- •Микроэлектронные приборы
- •Классификация интегральных микросхем
- •Методы изоляции элементов имс
- •Полупроводниковые интегральные микросхемы технология изготовления
- •Элементы имс на биполярных структурах
- •Технология создания имс на биполярных структурах
- •Элементы имс на мдп-структурах
- •Параметры пзс
- •Области применения пзс
- •Применение пзс в вычислительной технике
- •Использование пзс в устройствах связи
- •Глава 1. Исторический обзор развития микроэлектроники.
- •1.1. Основные направления развития электроники.
- •1.2. История развития микроэлектроники.
- •Глава 2. Общие сведения о полупроводниках
- •2.1. Полупроводники и их электрофизические свойства
- •2.2. Структура полупроводниковых кристаллов
- •2.3. Свободные носители зарядов в полупроводниках
- •2.4. Элементы зонной теории твердого тела.
- •Глава 3. Методы получения монокристаллов кремния
- •3.1. Метод Чохральского
- •3.2. Метод зонной плавки
- •Глава 4. Электронно-дырочный переход.
- •4.1. Образование p-n-перехода.
- •4.2. Вольтамперная характеристика p-n-перехода.
- •Глава 5. Биполярные и полевые транзисторы.
- •5.1. Структура биполярных транзисторов и принцип действия.
- •5.2. Полевой транзистор с управляющим p-n-переходом.
- •5.4. Методы получения транзисторов.
- •Глава 6. Интегральные схемы.
- •6.1. Общие понятия.
- •6.2. Элементы биполярных полупроводниковых ис.
- •6.3. Элементы ис на мдп-структуре.
- •Глава 7. Большие интегральные схемы.
- •7.1. Общие положения.
- •Глава 8. Технологический процесс изготовления ис.
- •Глава 9. Гибридные интегральные схемы.
- •Глава 10. Методы обеспечения качества и надежности в процессе серийного производства ппи.
- •10.1. Общие понятия.
- •10.2. Система получения и использования информации при проведении работ по повышению надежности ппи.
- •10.3. Требования по обеспечению и контролю качества ис в процессе производства.
Собственная электропроводность п/п.
Валентные электроны в п/п слабо связаны с ядром, поэтому при соответствующей дополнительной энергии они могут отрываться от атома и становиться свободными, совершать хаотическое движение в межатомном пространстве п/п.
Для того, чтобы валентный электрон стал свободным, его энергия должна превышать энергию ширины запрещающей зоны.
1 эВ– это энергия, которую нужно затратить для перемещения электрона в поле с разностью потенциалов в 1В.
При абсолютном нуле все электроны п/п находятся на своих орбитах. Свободных электронов нет. Электропроводность равна 0. При повышении температуры ситуация меняется. При комнатной температуре, если бы тепловая энергия была распределена между всеми электронами, то они получили бы по 0,025 эВ, т.е. значительно меньше, чем нужно для отрыва от атома. Свободных носителей не было бы. Но в действительности тепловая энергия распределена неравномерно, и при комнатной температуре небольшая часть валентных электронов п/п получает энергию, достаточную для отрыва от атома.
Когда валентный электрон становится свободным, то одна ковалентная связь разрывается. Отсутствие одного электрона в ковалентной связи называется дыркой. Процесс образования свободного электрона и дырки называетсяионизацией, или генерацией носителей заряда. Дырка может быть заполнена:
Электроном, перешедшим с соседней ковалентной связи, вследствие беспорядочного хаотического теплового движения;
Свободным электроном. В этом случае исчезают два носителя. Процесс заполнения дырки свободным электроном называется рекомбинацией.
Поскольку при ионизации одновременно появляется и дырка и электрон, а при рекомбинации они оба исчезают, то в собственном п/п число дырок всегда равно числу свободных электронов.
NI =PI
Процессы ионизации и рекомбинации протекают в п/п непрерывно, но в стационарных условиях число случаев ионизации равно числу случаев рекомбинации. Поэтому в п/п поддерживается определённая концентрация носителей – равновесная, которая зависит от температуры и от ширины запрещённой зоны.
Приложим к п/п напряжение. Под действием э.п. свободные электроны, совершая тепловое хаотическое движение в межатомном пространстве, начнут дрейфовать в сторону анода (сэ1). Они будут создавать обычный электронный ток, как в металлах.
U
1 2 3 4 сэ2
+-
АК
сэ1
Но в отличие от металлов в п/п будет протекать ещё один ток. Он будет возникать в результате перехода электронов с орбиты ковалентной связи одной пары атомов на орбиту с дыркой ковалентной связи соседней пары атомов, расположенных в направлении анода. Сначала электроны будут уходить с ковалентной связи атомов, расположенных более близко к аноду, затем с соседнего атома и т.д. Дырка, таким образом, переходит от левого края п/п к правому. Дойдя до крайней правой пары атомов, она рекомбинирует со свободным электроном сэ2, поступающим с катода.
Скорость перемещения валентных электронов в 2-3 раза меньше скорости дрейфа свободных электронов. Валентные электроны обладают меньшей энергией, чем свободные. Для того, чтобы различать эти два тока, ток, образованный перемещением валентных электронов, называется дырочным током.
В п/п под действием э.п., созданного источником, возникает ток, называемый дрейфовым.Он имеет две составляющие: дырочную и электронную:
Iдр=INдр+IPдр
Более объективной характеристикой является плотность дрейфового тока:
Jдр=jNдр+jPдр=qNINE+qPIPE
E– напряжённость
PI,NI–концентрация носителей
- коэффициенты подвижности носителей заряда.
Подвижность носителей заряда– это их средняя направленная скорость в э.п. с напряжённостью 1 В/см.