Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

____OIT 2012_____ / Metodychku pdf / LR 6 (funk)

.pdf
Скачиваний:
7
Добавлен:
12.02.2016
Размер:
386.18 Кб
Скачать

Використання математичних функцій для проведення обчислень в Microsoft Excel

2

„Використання математичних функцій для проведення обчислень в

Microsoft Excel”.

Укладач: Басюк Т. М., к.т.н., доцент каф. ІСM

3

Мета роботи: Ознайомитись з основними математичними функціями табличного процесора Microsoft Excel. Навчитись будувати діаграми та працювати з умовними, логічними функціями і процедурами підбору параметрів.

ТЕОРЕТИЧНА ЧАСТИНА

Відомо, що дані представлені у графічній формі набагато краще сприймаються людиною ніж масив числових значень. З огляду на це, в Microsoft Excel реалізовані засоби для побудови різних графіків, діаграм, які полегшують сприйняття числової інформації. Їх побудова здійснюється за допомогою Майстра діаграм з подальшим розміщенням рисунка або на окремому листі або у вигляді окремого графічного об’єкта разом із вихідною таблицею. Побудова діаграми за допомогою Майстра діаграм здійснюється в чотири етапи. На першому етапі здійснюється вибір типу та форми діаграми. При виборі типу діаграми необхідно враховувати її призначення. За певними діаграмами можна порівнювати окремі значення (гістограма, лінійна). Інші типи діаграм призначені для відображення даних за допомогою інтерполяції окремих значень (графік). За допомогою діаграми у вигляді кола можна представити дані як частини цілого (рис.1).

Рис.1. Перший крок роботи майстра при побудові діаграм

4

На другому етапі користувач вказує діапазон даних, за якими будується діаграма, або здійснює коригування вже введених даних (рис.2). Після внесення коректив, якщо це необхідно, відбувається перехід до третього кроку. Третє вікно дозволяє ввести заголовки, вісі, легенду, підписи до даних тощо (рис.3). Зазначена інформація дозволяє зробити вихідний рисунок більш зрозумілим для подальшого сприйняття.

Рис.2. Другий крок роботи майстра

Рис.3. Третій крок роботи майстра

В останньому вікні вказується місце розташування діаграми – на окремому листі чи разом із таблицею початкових даних. Діаграму можна перетягнути маніпулятором миша в будь-яке місце. Для зміни розміру діаграми необхідно вибрати її й перетягнути в потрібному напрямі маркери розміру. Зміна типу й параметрів побудованої діаграми здійснюється вибором відповідного пункту контекстного меню. Знищення діаграми відбувається натисненням на клавішу Delete.

Розв’язування алгебраїчних рівнянь

Крім відображення заданих даних в графічній формі табличний процесор дозволяє здійснювати цілий ряд математичних, статистичних, алгебраїчних операцій. Однією із функцій якого є розв’язування систем залежностей однієї змінної відносно іншої – рівнянь. В Microsoft Excel існують два основних способи вирішення даного типу завдань: графічний та аналітичний. Розглянемо систему рівнянь представлену виразом (1).

x +4y = 9

(1)

 

2y = −3

x2

 

Для вирішення даної системи рівнянь з допомогою графічного способу необхідно здійснити певні перетворення. А саме, здійснити запис системи рівнянь (1) у вигляді залежностей однієї змінної від іншої:

 

 

 

 

 

 

 

5

 

 

 

 

 

 

 

 

 

 

9 x

 

 

 

 

 

 

 

 

 

 

 

 

y =

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(2)

 

 

 

 

x2 +3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y =

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Після зазначеного перетворення необхідно відобразити утворені

залежності у вигляді діаграми. Для цього заповнимо стовпець А: заповнюємо

комірки А2:А22 числами з проміжку [-5, 5] з кроком 1. При запо

вненні

стовпця В в комірку В2 вносимо формулу =(9-A2)/4, яку потім копіюємо

включно до комірки В22. При заповненні стовпця С в комірку С2 вводимо

формулу =(A2^2+3)/2, та копіюємо її до комірки С22.

 

 

 

 

 

 

 

 

 

 

 

Далі,

необхідно

виділити

блок з

 

 

 

16

 

 

 

даними та з допомогою Майстра

 

 

 

 

 

 

 

 

 

 

14

 

 

 

діаграм

побудувати

графіки

функцій

 

 

 

 

 

 

 

використавши для вказаних цілей тип

 

 

 

12

 

 

 

діаграми – точкова (рис.4).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10

 

 

 

Як видно з рисунка координати

 

 

 

 

 

 

 

точок

перетину

графіків

і

будуть

 

 

 

8

 

 

 

розв’язками системи рівнянь (2) та

 

 

 

 

 

 

 

 

 

 

6

 

 

 

знаходяться в точках {(1;2); (-1,5;2,3).

 

 

 

4

 

 

 

Отримані

значення

точок

дають

 

 

 

 

 

 

приблизний

результат, який

залежить

 

 

 

 

 

 

 

 

 

 

2

 

 

 

від прийнятого кроку. Чим менший

 

 

 

 

 

 

 

 

 

 

0

 

 

 

крок тим точнішим буде значення точок

 

 

 

 

 

 

перетину.

 

 

 

 

 

-6

-4

-2

0

2

4

6

 

 

 

 

 

 

Тепер спробуємо розв’язати зазначену систему рівнянь (1) аналітичним

способом. Для початку роботи необхідно внести в електронну таблицю

початкові дані та розрахункові формули наступним чином (рис.5):

 

 

Рис.5. Введення зазначених виразів в Microsoft Excel

6

Для вирішення системи рівнянь необхідно скористатись функцією Пошук рішення, яка запускається із застосуванням команди: Сервіс\Пошук рішення. Якщо команда Пошук рішення відсутня у меню Сервіс, необхідно її встановити шляхом виконання команди: Сервіс\ Надбудови.

Рис.6. Вікно додання нових надбудов в Microsoft Excel

При відсутності потрібної надбудови у списку необхідно скористатись кнопкою Обзор. Далі навпроти необхідної настройки потрібно встановити прапорець і натиснути на кнопку OK.

Задачі, які вирішуються з допомогою вкладки Пошук рішення в загальній постановці формулюються:

знайти: х1, х2, … , хn

такі, що : F(х1, х2, … , хn) > {Max; Min; = Value}

при обмеженнях: G(х1, х2, … , хn) > {Value; Value; = Value}

При цьому шукані змінні – комірки робочого листа Excel, що називаються регулюючими комірками. Цільова функція F(х1, х2, … , х n), задається у вигляді формули в комірці робочого листа та повинна залежати (посилатись) від регулюючих комірок. В момент постановки задачі визначається, що необхідно робити з цільовою функцією. Можливий вибір одного з декількох варіантів: Знайти максимум чи мінімум цільової функції F(х1, х2, … , хn) або досягти того, що цільова функція F(х1, х2, … , хn) набувала фіксованих значень: F(х1, х2, … , хn) = a. Функції G(х1, х2, … , хn) називаються обмеженнями, які можна задавати у вигляді нерівностей чи рівностей.

Під вказану постановку задач потрапляє широкий спектр задач оптимізації, в тому числі вирішення різного роду рівнянь, систем рівнянь, задач лінійного та нелінійного програмування.

7

Після запуску відповідної команди на екрані комп’ютера з’явиться вікно пошуку рішення (рис.7)

Рис.7. Вікно пошуку рішення

Взгаданому вікні (рис.7) необхідно ввести такі значення:

в полі Встановити цільову комірку необхідно ввести адресу комірки, що містить формулу для обчислення значень оптимізуючої функції, в розглядуваному прикладі цільова комірка В5 та задати значення, яке рівне значенню правої частини першого рівняння (тобто 9).

для максимізації значення цільової комірки необхідно встановити перемикач максимальному значенню, для мінімізації використовується перемикач мінімальному значенню. В розглядуваному прикладі необхідно встановити перемикач в положення по значенню та ввести значення 9.

в поле Змінюючи комірки необхідно ввести адреси комірок, що змінюються, тобто аргументів цільової функції В5, розділюючи їх знаком ";" (або клацаючи мишею при натиснутій клавіші Сtrl на відповідних комірках). Для автоматичного пошуку всіх впливаючих на рішення комірок застосовується команда Передбачити. В нашому прикладі це є комірки

B3:B4.

в поле Обмеження з допомогою кнопки Додати вводяться всі обмеження, яким повинен відповідати результат пошуку. Для нашого прикладу обмеження мають вид B6=-3.

Рис.8. Вікно вводу обмежень на пошук рішення Запуск процедури пошуку здійснюється натисненням на кнопку

Виконати.

8

Збереження отриманого значення здійснюється шляхом вибору відповідного перемикача у вікні Результатів пошуку рішення.

Рис.9. Вікно результатів пошуку рішення

В результаті виконаних дій здійснюється пошук розв’язків зазначеної системи рівнянь у відповідних комірках таблиці (рис.10).

Рис.10. Розв’язок системи рівнянь

Крім зазначених полів функції Пошуку рішення дана надстройка забезпечує завдання різноманітних (додаткових) параметрів, щляхом вибору команди Параметри у вікні Пошуку рішення (рис.7).

Рис.11. Параметри надбудови Пошук рішення

9

Максимальний час - обмежує час, відведений на процес пошуку рішення (за замовчуванням задано 100 секунд, що є достатнім для завдань, що мають близько 10 обмежень, якщо завдання більшої розмірності, то час необхідно збільшити).

Граничне число ітерацій – інший спосіб обмеження часу пошуку шляхом завдання максимального числа ітерацій. За замовчуванням задано 100, і, найчастіше, якщо рішення не отримане за 100 ітерацій, то при збільшенні їх кількості (у поле можна ввести час, що не перевищує 32767 секунд) ймовірність одержати результат є надзвичайно низька. У цьому випадку, краще спробувати змінити початкове наближення й запустити процес пошуку заново.

Відносна похибка - задає точність, у відповідності до якої визначається відповідність значення шуканої комірки цільовому значенню.

Припустиме відхилення - задається в % тільки для завдань з цілочисельними обмеженнями. Пошук рішення в таких завданнях спочатку знаходить оптимальне нецілочисельне вирішення, а потім здійснюється пошук найближчої цілочисельної точки намагається знайти найближчу цілочисельну, рішення в якій відрізнялося б від оптимального не більш, ніж на зазначена даним параметром кількість відсотків.

Збіжність - коли відносна зміна значення в цільовій комірці за останні

п'ять ітерацій стає меншою числа (дріб з інтервалу від 0 до 1), зазначеного в даному параметрі, пошук припиняється.

Лінійна модель – зазначений параметр вказується у випадку, коли цільова функція й обмеження - лінійні функції, що прискорює процес пошуку рішення.

Ненегативні значення – цією опцією задається обмеження на змінні, що здійснює процедури пошуку розв’язку в позитивній області значень.

Автоматичне масштабування – дана опція задається у випадку значного розходження масштабу значень вхідних змінних та цільової функції. Наприклад, змінні задаються в штуках, а цільова функція, що визначає максимальний прибуток, вимірюється в мільярдах гривень.

Показувати результати ітерацій – ввімкнення даної функції

відображає покроковий процес пошуку, показуючи на екрані результати кожної ітерації.

Оцінки – зазначена група параметрів служить для вказання методу екстраполяції - лінійна або квадратична, - використовуваного для одержання вихідних оцінок значень змінних у кожному одномірному пошуку. Лінійна служить для використання лінійної екстраполяції вздовж дотичного вектора. Квадратична служить для використання квадратичної екстраполяції, що дає кращі результати при вирішенні нелінійних завдань.

10

Різниці (похідні) – дана група параметрів використовується для вибору методу чисельного диференціювання, що використається для обчислення часток похідних цільових та обмежуючих функцій. Параметр Прямі використовується в більшості завдань, де швидкість зміни обмежень відносно невисока, а Центральні – для функцій, що мають розривну похідну. Другий спосіб вимагає більше обчислень, однак його застосування є доцільним у випадку, якщо система видає повідомлення про те, що одержати більше точне рішення не вдається.

Метод пошуку - служить для вибору алгоритму оптимізації. У Методі сполучених градієнтів використовується менше пам'яті, але здійснюється більше ітерацій, на відміну від методу Ньютона. Даний метод потрібно застосовувати у випадку великого завдання, а також якщо ітерації дають занадто низьку відмінність у послідовних наближеннях.

Зберегти моделі пошуку можна такими способами:

при збереженні книги Excel після пошуку рішення всі значення, введені у вікнах діалогу Пошук рішення, зберігаються разом з даними робочого листа. З кожним робочим аркушем у робочій книзі можна зберегти один набір значень параметрів Пошуку рішення;

якщо в межах одного робочого аркуша Excel необхідно розглянути кілька моделей оптимізації (наприклад знайти максимум та мінімум однієї функції, або максимальні значення декількох функцій), то зручніше зберегти ці моделі, використовуючи кнопку

Параметри/Зберегти модель вікна Пошук рішення. Діапазон для моделі, що зберігається містить інформацію про цільову комірку, про комірки, що змінюються, про кожне обмеження та всі значення діалогу Параметри. Вибір моделі для вирішення певного оптимізаційного завдання здійснюється за допомогою кнопки

Параметри/Завантажити модель діалогу Пошук рішення;

збереження параметрів пошуку у вигляді іменованих сценаріїв. Для цього необхідно натиснути кнопку Зберегти сценарій діалогового вікна

Результати пошуку рішень.

Окрім вставки оптимальних значень у змінні комірки Пошук рішення дозволяє представляти результати у вигляді трьох звітів: Результати, Стійкість та Границі. Для генерації одного чи декількох звітів необхідно виділити відповідні назви у вікні діалогу Результати пошуку рішення. Детальніше розглянемо кожен з них.

Соседние файлы в папке Metodychku pdf