Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

lab_MODIFIED_full-1

.pdf
Скачиваний:
6
Добавлен:
12.02.2016
Размер:
1.71 Mб
Скачать

Лабораторна робота №14. Розв’язок рівнянь та систем нелінійних рівнянь в

середовищі програми MathCAD

Мета роботи: навчитися розв’язувати рівняння за допомогою вбудованої функції та системи алгебраїчних рівнянь за допомогою блоку Given… в середовищі

програми MathCAD

 

Теоретичні відомості

 

Будь-яке рівняння може бути записане як

, що може бути

спрощене до

. Розв’язок дається вбудованою функцією програми

:

t: функція

повинна отримати два аргументи:

-перший - спрощений вираз функції;

-другий - назву невідомої, відносно якої здійснюється розв’язок.

Наприклад, нехай задане рівняння:

.

Для його розв’язку необхідно написати:

-задати попереднє наближене значення невідомої,

-отримати значення х, що є розв’язком заданого

рівняння відносно невідомої .

Приклад 1: Трансцендентне рівняння f (x) cos(x) x 0.2

x 1

root (f (x) x) 0.616

Приклад 2. Нелінійне рівняння другого порядку.

Розв’язок – два дійсних корені.

x 10 10

f (x) 1.2 x2 0.25 x 12.5

x 2

x1r root (f (x) x)

 

x1r 3.125

 

 

 

f (x)

 

 

x 2

x2r

root

 

 

 

x

x2r 3.333

x x1r

 

 

 

 

 

 

 

111

Приклад 3. Нелінійне рівняння третього порядку.

Розв’язок – один дійсний корінь і два комплексних.

 

 

 

 

 

 

 

 

 

 

 

i

 

1

 

 

 

 

 

 

 

f (x) 3.1 x3 2.05 x2 0.31 x 10

 

x

0.5

 

x1r

root (f (x) x)

 

 

 

 

 

 

 

 

f (x)

 

 

x

1 i

x2r

root

 

 

x

 

x x1r

 

 

 

 

 

 

 

 

f (x)

 

x

1 i

x3r

root

 

 

x

(x x1r) (x x2r)

x1r 1.306

x2r 0.984 1.226i

x3r 0.984 1.226i

Приклад 4. Векторне рівняння другого порядку.

Невідомі вектори – QE I QE1

x 0

A (1

2 3 )

 

 

B ( 7

12

10 )

C (6 7 8 )

F(A B C x) Ax2 B x C

QE(A B C x) root (F(A B C x) x)

QE(A B C x) ( 1 0.655 1.333 )

x 6

QE1(A B C x) root (F(A B C x) x)

QE1(A B C x) ( 6 5.345 2 )

Для розв’язку систем рівнянь будь-якого порядку зручно використовувати засоби блоку Given…Цей блок обмежений згори ключовим словом Given…, після якого розташовують вирази всіх алгебраїчних рівнянь, необхідних для розв’язку системи. Вирази необхідно записувати із спеціальним знаком «жирне дорівнює»,

який кодується комбінацією клавіш CTRL+=. Перед початком блоку слід визначити попередні наближені значення невідомих, відносно яких здійснюється розв’язок системи. Всередині блоку після виразів рівнянь зазначають область, в

якій можливий розв’язок (наприклад,

). Далі для знаходження точних значень

 

112

невідомих використовують функцію Find(x,y), яка повертає вектор значень невідомих. Якщо розв’язків декілька, повторюють визначення наближених попередніх значень невідомих і сам блок, в якому зазначають нову область пошуку

(наприклад, ).

Приклад 1. Перетин кривої другого порядку прямою лінією.

x 1 y

 

1

Given

 

 

 

 

 

x2

 

 

 

y

2

 

 

6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

 

 

 

 

 

y

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

x1

x1

2.158

 

 

 

 

 

Find( x, y)

=

 

 

 

 

y1

y1

1.158

 

f( x)

6

x2

f1( x)

1 x

 

 

x

10 .. 10

 

 

 

 

20

 

 

 

 

 

 

f(x)

10

 

 

 

 

 

 

 

 

 

 

 

f1(x)

 

 

 

 

 

 

 

0

 

 

 

 

 

9

 

 

 

 

 

 

 

10

5

 

 

 

 

 

10

0

5

10

 

 

10

x

10

 

 

Приклад 2.

x 10 10

f1(x) 0.87x2 7.54x 108.1

f2(x) 1.45x2 2.2

200

 

 

 

 

f1(x) 100

 

 

 

 

f2(x)

 

 

 

 

0

 

 

 

 

100

5

 

 

 

10

0

5

10

 

 

x

 

 

113

x

5

y

10

 

Given

 

 

 

 

y

f1( x)

y

f2( x)

 

x>0

 

 

 

 

x1

 

 

 

x1

5.324

 

Find( x, y)

=

 

y1

 

 

 

y1

43.299

x

10

 

y

40

 

Given

 

 

 

 

y

f1( x)

 

y

f2( x)

 

 

x<0

 

 

 

 

x2

 

 

x2

8.574

 

 

Find( x, y)

=

y2

 

 

y2

108.792

114

Хід роботи

1.Знайти номер варіанту k для виконання завдання. Для цього із залікової книжки студент вибирає дві останні цифри m (передостання) та n (остання цифра). Далі,

варіант k визначається за такою формулою: k mod10n,20

де mod(x,y) – знаходження остачі від ділення x на y, наприклад mod(7,4) = 3

2.Згідно варіанту побудувати графіки та знайти:

 

1. Розв’язки системи лінійних рівнянь:

9.Розв’язки системи нелінійних рівнянь:

- 0.15*x1 - 0.84*x2 = 4.1

f1(x) = 3.5*x3 - 0.1*x2 - 0.24*x – 9.7

1.48*x1 + 2.2*x2 = 1.4

f2(x) = 0.53*x – 1.2

 

2.

Корені нелінійного рівняння:

10.Розв’язки системи нелінійних рівнянь:

f(x) = 1.8*x2+0.83*x – 25.3

f1(x) = 1.5*x3 - 0.87*x2 - 1.24*x – 15.7

3.

Корені нелінійного рівняння:

f2(x) = 7.53*x + 5.2

 

f(x) = 3.1*x2 - 4.33*x – 15.57

11.Розв’язки системи нелінійних рівнянь:

4.

Корені нелінійного рівняння:

f1(x) = 1.5*x3 - 0.87*x2 - 1.24*x – 15.7

f(x) = 1.8*x3 + 7.1*x2 - 0.23*x – 5.87

f2(x) = 7.53*x2 + 5.2

 

5.

Корені нелінійного рівняння:

12.Розв’язки системи нелінійних рівнянь:

f(x) = 5.8*x3 - 1.4*x2 - 0.53*x – 32.87

f1(x) = 6.1*x3 - 0.17*x2 - 1.54*x – 3.1

6.

Розв’язки системи лінійних рівнянь:

f2(x) = 1.57*x2 + 0.2

 

- 0.17*x1 - 0.84*x2 = 1.1

13.Розв’язки

системи

нелінійних

1.45*x1 + 7.2*x2 = 1.9

рівнянь:

 

 

7.

Корені нелінійного рівняння:

f1(x) = 0.1*x3 - 0.87*x2 - 7.54*x – 0.1

f(x) = 7.8*x3 - 0.4*x2 - 0.48*x – 92.7

f2(x) = 1.45*x2 + 7.2

 

8.

Корені нелінійного рівняння:

14.Розв’язки

системи

нелінійних

f(x) = 3.5*x3 - 0.1*x2 - 0.24*x – 9.7

рівнянь:

 

 

 

 

f1(x) = - 0.87*x2 - 7.54*x – 0.1

 

 

 

f2(x) = 1.45*x2 + 7.2

 

 

 

15.Розв’язки системи лінійних рівнянь:

 

 

- 0.17*x1 - 0.54*x2 = 3.1

 

 

 

1.47*x1 + 7.2*x2 = 1.4

 

 

 

 

 

 

3.

Завершити роботу, результати занести у звіт

 

 

 

115

 

 

Контрольні запитання

1.Для чого застосовується блок Given?

2.В яких випадках обирають функції Find або Minerr?

3.Яке значення мають перші наближення аргументів?

4.Розв’язки систем рівнянь.

Зміст звіту

1.Титульний лист.

2.Мета роботи.

3.Короткі теоретичні відомості.

4.Результати виконаної роботи.

5.Висновок.

116

Список рекомендованої літератури.

3.Дьяконов В.П., Абраменкова И.В. MathCAD7 в математике, физике и

Internet. М. – 1998.

4.Аладьев В.З., Гершгорн Н.А. Вьічислительньіе задачи на персональном компьютере, - К., - 1991.

117

Лабораторна робота №15. Статистична обробка даних та інтерполяція в

програмі MathCAD

Мета роботи: навчитися використовувати стандартні функції для статистичної обробки масивів даних, регресивного аналізу та проведення інтерполяції засобами програми MathCAD.

Теоретичні відомості

При проведенні різноманітних експериментальних досліджень часто виникають задачі здійснення статистичної обробки даних, інтерполяції,

екстраполяції, або апроксимації.

Статистика - галузь знань, в якій розглядаються загальні питання збору,

вимірювання та аналізу масових статистичних (кількісних, або якісних) даних.

Статистика розробляє спеціальну методологію дослідження та обробки даних.

Статистичні методи - методи аналізу статистичних даних. Виділяють методи прикладної статистики, які можуть застосовуватися у всіх галузях наукових досліджень і будь-яких галузях народного господарства, та інші статистичні методи, використання яких є обмеженим тією чи іншою сферою. Маються на увазі такі методи, як статистичний приймальний контроль, статистичне регулювання технологічних процесів, надійність та випробування, планування експериментів.

Для опису даних застосовують як детерміновані так і імовірнісні методи. За допомогою детермінованих методів можна проаналізувати лише ті дані, які є в розпорядженні дослідника. В багатьох випадках статистичні дані - це значення певної ознаки, властиві досліджуваним об'єктам. Ці значення можуть бути кількісними, або вказувати на категорію до якої можна віднести об'єкт.

Застосування статистичних методів і моделей для статистичного аналізу конкретних даних тісно прив'язане до проблемами відповідної області. Теорія статистичних методів націлена на вирішення реальних завдань. Тому в ній постійно виникають нові постановки математичних завдань аналізу статистичних даних, розвиваються і обґрунтовуються нові методи. Обґрунтування часто проводиться математичними засобами, тобто шляхом доказу теорем. Велику роль відіграє методологічна складова - як саме ставити завдання, які припущення прийняти з метою подальшого математичного вивчення. Є великою роль сучасних інформаційних технологій, зокрема, комп'ютерного експерименту. Задача аналізу

118

історії статистичних методів з метою виявлення тенденцій розвитку і застосування їх для прогнозування все ще залишається актуальною.

Функції статистичної обробки даних

Більшість стандартних функцій статистичної обробки застосовуються до даних представлених у вигляді двох векторів: вектора координат точок на площині

(вісь абсцис), вектора координат по осі ординат. Ці вектори повинні мати однакову розмірність і бути наперед визначеними. Програма MathCAD містить ряд стандартних функцій для проведення статистичної обробки, таблиця 1.

Таблиця 1. Функції статистичної обробки даних

Функція

Позначення

 

 

 

Призначення

 

 

 

 

 

 

cvar(A, B)

Cov

Коваріація (кореляційний момент) в теорії

 

 

ймовірностей і математичній статистиці міра

 

 

лінійної залежності двох випадкових величин.

 

 

 

 

 

 

stdev(A)

Σ

Середньоквадратичне

відхилення

в теорії

 

 

ймовірностей і статистиці найбільш поширений

 

 

показник

розсіювання

значень

випадкової

 

 

величини щодо її математичного сподівання.

 

 

 

 

mean(A)

M

Середнє значення - числова характеристика, що

 

 

для набору даних є сумою значень, поділеною на

 

 

їхню кількість.

 

 

 

 

 

 

 

 

 

 

 

 

 

corr(A, B)

R

Кореляція

 

(кореляційна

залежність)

-

 

 

статистичний взаємозв'язок двох, або кількох

 

 

випадкових величин. Математичної мірою

 

 

кореляції

двох

випадкових

величин

є

 

 

кореляційний зв’язок, або коефіцієнт кореляції.

 

 

 

 

var(A)

σ2

У теорії ймовірності та статистики, дисперсія

 

 

характеризує

розкид

значень

випадкової

 

 

величини. Це один з декількох параметрів

 

 

розподілу ймовірностей, що описують як далеко

 

 

числа знаходяться відносно середнього.

 

 

 

 

 

 

 

 

 

 

 

 

 

119

 

 

 

 

 

 

 

Функції регресивного аналізу

У статистиці, регресивний аналіз є методом моделювання залежностей між змінно Y і однією, або декількома змінними X. У лінійній регресії, за допомогою лінійної функції шляхом апроксимації створюється модель випадкової величини.

Невідомі параметри моделі визначаються на основі отриманих даних. Такі моделі називаються лінійними моделями. Як і всі форми регресивного аналізу, лінійна регресія фокусується на умовному розподілі ймовірностей, а не поєднанні розподілів ймовірності який є областю багатовимірного аналізу. Для проведення регресивного аналізу є наявними дві функції, таблиця 2.

Таблиця. 2 Функції регресивного аналізу

Функція Призначення

slope(VX,VY) Коефіцієнт нахилу прямої. У математиці, нахил (градієнт)

описує крутизну, або нахил прямої. Чим більшим є цей коефіцієнт тим крутіший нахил прямої.

intercept(VX,VY) Визначення точки перетину прямої з віссю ординат (Y).

Рис. 1 Результати регресивного аналізу випадкової величини VY

120

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]