Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Брушковський О. Л. ВИЩА МАТЕМАТИКА

.pdf
Скачиваний:
107
Добавлен:
12.02.2016
Размер:
1.45 Mб
Скачать

Варіант №24

Завдання 1. Дослідити на збіжність числові ряди: (а) користуючись ознакою Даламбера ; (б) інтегральною ознакою збіжності рядів:

n2 24

 

 

1

 

 

 

a)

 

 

;

б)

 

 

 

 

.

4

n

n 7

ln

5

 

n =1

 

 

n =1

 

n 7

Завдання 2. Дослідити на збіжність знакозмінний ряд. Якщо ряд збіжний, то встановити чи він збіжний абсолютно, чи умовно

−1 n−1

n =1 4 n 3 2 .

Завдання 3. Обчислити означений інтеграл з точністю до 0,001 методом розкладу підінтегральної функції в степеневий ряд

1/ 10

x cos x dx .

0

Завдання 4. Скласти таблицю розподілу ймовірностей дискретної випадкової величини Х, побудувати багатокутник розподілу, знайти математичне сподівання М(Х), дисперсію D(X)

і середнє квадратичне відхилення (Х).

В кожній сотні приладів, які випускає деякий завод, 96 першосортних. Х – число першосортних приладів серед чотирьох взятих.

211

Завдання 5. Задана функція розподілу ймовірностей абсолютно неперервної випадкової величини Х:

{0, при x a ;

F x = k xa 2 , при a x b ;

1, при x b.

Необхідно: 1) знайти коефіцієнт k і щільність розподілу ймовірностей; 2) побудувати графіки функцій розподілу ймовірностей і щільності розподілу ймовірностей; 3) знайти математичне сподівання, дисперсію і середнє квадратичне відхилення випадкової величини Х; 4) знайти ймовірність

попадання випадкової величини Х в інтервал ( , ) та

зобразити цю ймовірність на графіках функції розподілу ймовірностей і щільності розподілу ймовірностей.

a = 4; b = 10; = 5; = 16.

Завдання 6. Завод залізобетонних виробів виготовляє будівельні блоки. Можна вважати, що маса блока є нормально розподілена випадкова величина Х з математичним сподіванням (проектною

масою) а кг і середнім квадратичним відхиленням

 

кг. Знайти

ймовірності

того, що

маса

навмання

взятого

блока

буде:

1)

знаходитись

в межах

від

до

кг;

2)

відхилятись

від

проектної маси по абсолютній величині менше ніж на

кг.

 

a = 800;

= 14;

= 788;

 

= 818;

= 12.

212

Варіант №25

Завдання 1. Дослідити на збіжність числові ряди: (а) користуючись ознакою Даламбера ; (б) інтегральною ознакою збіжності рядів:

9

n 1

 

 

 

1

 

a)

 

 

;

б)

 

.

n 2

 

2

12 n 40

n =1

!

n =1

n

 

Завдання 2. Дослідити на збіжність знакозмінний ряд. Якщо ряд збіжний, то встановити чи він збіжний абсолютно, чи умовно

−1 n . n =1 n 25

Завдання 3. Обчислити означений інтеграл з точністю до 0,001 методом розкладу підінтегральної функції в степеневий ряд

1/ 9

x ex dx .

0

Завдання 4. Скласти таблицю розподілу ймовірностей дискретної випадкової величини Х, побудувати багатокутник розподілу, знайти математичне сподівання М(Х), дисперсію D(X)

і середнє квадратичне відхилення (Х).

Для зрошення деякої ділянки використовують два незалежно працюючих трубопроводи. Ймовірність розриву трубопроводу внаслідок гідравлічного удару на протязі сезону складає для першого з них 0,06; для другого – 0,14. Х – число розірваних на протязі сезону трубопроводів.

213

Завдання 5. Задана функція розподілу ймовірностей абсолютно неперервної випадкової величини Х:

{0, при x a ;

F x = k xa 2 , при a x b ;

1, при x b.

Необхідно: 1) знайти коефіцієнт k і щільність розподілу ймовірностей; 2) побудувати графіки функцій розподілу ймовірностей і щільності розподілу ймовірностей; 3) знайти математичне сподівання, дисперсію і середнє квадратичне відхилення випадкової величини Х; 4) знайти ймовірність

попадання випадкової величини Х в інтервал ( , ) та

зобразити цю ймовірність на графіках функції розподілу ймовірностей і щільності розподілу ймовірностей.

a = –2; b = 7; = 2; = 9.

Завдання 6. Завод залізобетонних виробів виготовляє будівельні блоки. Можна вважати, що маса блока є нормально розподілена випадкова величина Х з математичним сподіванням (проектною

масою) а кг і середнім квадратичним відхиленням

 

кг. Знайти

ймовірності того, що маса навмання взятого блока буде:

 

1) знаходитись в межах від

до

кг; 2) відхилятись від

проектної маси по абсолютній величині менше ніж на

 

кг.

a =1000;

= 22;

= 980;

=1032;

 

= 30.

214

Варіант №26

Завдання 1. Дослідити на збіжність числові ряди: (а) користуючись ознакою Даламбера ; (б) інтегральною ознакою збіжності рядів:

2 n

5

 

2

 

 

a)

;

б)

3 n

6

.

n

 

3

 

n =1

7

 

 

n =1

n 6 n 1

Завдання 2. Дослідити на збіжність знакозмінний ряд. Якщо ряд збіжний, то встановити чи він збіжний абсолютно, чи умовно

−1 n−1

.

n =1 9 n 2

Завдання 3. Обчислити означений інтеграл з точністю до 0,001 методом розкладу підінтегральної функції в степеневий ряд

1/ 10

 

arctg x dx .

0

x

Завдання 4. Скласти таблицю розподілу ймовірностей дискретної випадкової величини Х, побудувати багатокутник розподілу, знайти математичне сподівання М(Х), дисперсію D(X)

і середнє квадратичне відхилення (Х).

Для деякого шахіста ймовірність виграшу в кожній партії складає 0,85. Грається матч з чотирьох партій. Х – число виграних партій.

215

Завдання 5. Задана функція розподілу ймовірностей абсолютно неперервної випадкової величини Х:

{0, при x a ;

F x = k xa 2 , при a x b ;

1, при x b.

Необхідно: 1) знайти коефіцієнт k і щільність розподілу ймовірностей; 2) побудувати графіки функцій розподілу ймовірностей і щільності розподілу ймовірностей; 3) знайти математичне сподівання, дисперсію і середнє квадратичне відхилення випадкової величини Х; 4) знайти ймовірність

попадання випадкової величини Х в інтервал ( , ) та

зобразити цю ймовірність на графіках функції розподілу ймовірностей і щільності розподілу ймовірностей.

a = 5; b =11; = 7; =12.

Завдання 6. Завод залізобетонних виробів виготовляє будівельні блоки. Можна вважати, що маса блока є нормально розподілена випадкова величина Х з математичним сподіванням (проектною

масою) а кг і середнім квадратичним відхиленням

 

кг. Знайти

ймовірності того, що маса навмання взятого блока буде:

 

1) знаходитись в межах від

до

кг; 2) відхилятись від

проектної маси по абсолютній величині менше ніж на

 

кг.

a = 200;

= 6;

= 184;

= 226;

 

= 9.

216

Варіант №27

Завдання 1. Дослідити на збіжність числові ряди: (а) користуючись ознакою Даламбера ; (б) інтегральною ознакою збіжності рядів:

2 n !

 

 

1

 

 

 

a)

 

;

б)

 

 

.

6 n 4 8

n

5 n 2

 

2

n =1

 

 

n =1

 

 

Завдання 2. Дослідити на збіжність знакозмінний ряд. Якщо ряд збіжний, то встановити чи він збіжний абсолютно, чи умовно

−1 n−1

n =1 n 1 6 .

Завдання 3. Обчислити означений інтеграл з точністю до 0,001 методом розкладу підінтегральної функції в степеневий ряд

1/ 2

x 4 cos x dx .

0

Завдання 4. Скласти таблицю розподілу ймовірностей дискретної випадкової величини Х, побудувати багатокутник розподілу, знайти математичне сподівання М(Х), дисперсію D(X)

і середнє квадратичне відхилення (Х).

Робітник обслуговує два насоси, які працюють незалежно один від одного. Ймовірність того, що робота першого насосу на протязі зміни вимагатиме втручання робітника, становить 0,75; для другого

– 0,85. Х – число насосів, які на протязі зміни будуть вимагати втручання робітника.

217

Завдання 5. Задана функція розподілу ймовірностей абсолютно неперервної випадкової величини Х:

{0, при x a ;

F x = k xa 2 , при a x b ;

1, при x b.

Необхідно: 1) знайти коефіцієнт k і щільність розподілу ймовірностей; 2) побудувати графіки функцій розподілу ймовірностей і щільності розподілу ймовірностей; 3) знайти математичне сподівання, дисперсію і середнє квадратичне відхилення випадкової величини Х; 4) знайти ймовірність

попадання випадкової величини Х в інтервал ( , ) та

зобразити цю ймовірність на графіках функції розподілу ймовірностей і щільності розподілу ймовірностей.

a = –5; b = 1; = ­1; = 2.

Завдання 6. Завод залізобетонних виробів виготовляє будівельні блоки. Можна вважати, що маса блока є нормально розподілена випадкова величина Х з математичним сподіванням (проектною

масою) а кг і середнім квадратичним відхиленням

 

кг. Знайти

ймовірності того, що маса навмання взятого блока буде:

 

1) знаходитись в межах від

до

кг; 2) відхилятись від

проектної маси по абсолютній величині менше ніж на

 

кг.

a = 400;

= 6;

= 392;

= 414;

 

= 8.

218

Варіант №28

Завдання 1. Дослідити на збіжність числові ряди: (а) користуючись ознакою Даламбера ; (б) інтегральною ознакою збіжності рядів:

n 5 6n

1

 

 

 

a)

 

 

;

б)

 

 

 

.

7

n 2

n ln

28

 

n =1

 

 

n=2

 

n

Завдання 2. Дослідити на збіжність знакозмінний ряд. Якщо ряд збіжний, то встановити чи він збіжний абсолютно, чи умовно

−1 n−1 . n =1 5n n7

Завдання 3. Обчислити означений інтеграл з точністю до 0,001 методом розкладу підінтегральної функції в степеневий ряд

1/ 16

x ln 1 x dx .

0

Завдання 4. Скласти таблицю розподілу ймовірностей дискретної випадкової величини Х, побудувати багатокутник розподілу, знайти математичне сподівання М(Х), дисперсію D(X)

і середнє квадратичне відхилення (Х).

Обчислювальний центр, що складається з двох ЕОМ, які працюють незалежно одна від одної, проводить обробку інформації. Ймовірність відмови на протязі деякого часу для першої ЕОМ складає 0,12; для другої – 0,15. Х – число ЕОМ, які відмовлять за вказаний час.

219

Завдання 5. Задана функція розподілу ймовірностей абсолютно неперервної випадкової величини Х:

{0, при x a ;

F x = k xa 2 , при a x b ;

1, при x b.

Необхідно: 1) знайти коефіцієнт k і щільність розподілу ймовірностей; 2) побудувати графіки функцій розподілу ймовірностей і щільності розподілу ймовірностей; 3) знайти математичне сподівання, дисперсію і середнє квадратичне відхилення випадкової величини Х; 4) знайти ймовірність

попадання випадкової величини Х в інтервал ( , ) та

зобразити цю ймовірність на графіках функції розподілу ймовірностей і щільності розподілу ймовірностей.

a = 4; b = 13; = 6; = 15.

Завдання 6. Завод залізобетонних виробів виготовляє будівельні блоки. Можна вважати, що маса блока є нормально розподілена випадкова величина Х з математичним сподіванням (проектною

масою) а кг і середнім квадратичним відхиленням

 

кг. Знайти

ймовірності того, що маса навмання взятого блока буде:

 

1) знаходитись в межах від

до

кг; 2) відхилятись від

проектної маси по абсолютній величині менше ніж на

 

кг.

a = 600;

= 16;

= 782;

= 828;

 

= 20.

220