Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
курсач_Шани.docx
Скачиваний:
91
Добавлен:
11.02.2016
Размер:
110.79 Кб
Скачать

11. Контроль качества покрытия

Контроль качества покрытия проводить в соответствии с требованиями ГОСТ 9.301-86 и ГОСТ 9.302-88:

1) по внешнему виду;

2) по толщине.

По внешнему виду покрытие должно быть серого цвета с желтым оттенком, гладким (матовым или блестящим), без пузырей и шелушения.

Толщину покрытия определять:

- с помощью измерительного инструмента непосредственно на детали или на образце-свидетеле замером до и после нанесения покрытия; (штангенциркуль)

- металлографическим методом, по указанию в технологической документации на конкретную деталь.

Контроль качества гальванического покрытия осуществляется неразрушающими методами.

Неразрушающие испытания приобретают важное значение, когда разработка покрытия уже закончилась и можно переходить к его промышленному применению. Прежде чем изделие с покрытием поступит в эксплуатацию, его проверяют на прочность, отсутствие трещин, несплошностей, пор или других дефектов, которые могут вызвать разрушение. Вероятность наличия дефектов тем больше, чем сложнее покрываемый объект. В таблице 1 представлены и ниже описаны существующие неразрушающие методы определения качества покрытий.

Внешний осмотр

Простейшая оценка качества - внешний осмотр изделия с покрытием. Такой контроль сравнительно прост, он становится особенно эффективным при хорошем освещении, при использовании увеличительного стекла. Как правило, внешний осмотр должен производиться квалифицированным персоналом и в сочетании с другими методами.

Опрыскивание краской

Трещины и углубления на поверхности покрытия выявляются по впитыванию краски. Испытуемая поверхность опрыскивается краской. Затем ее тщательно вытирают и на нее напыляют индикатор. Через минуту краска выступает из трещин и прочих мелких дефектов и окрашивает индикатор, выявляя таким образом контур трещины.

Флуоресцентный контроль

Этот метод аналогичен методу впитывания краски. Испытуемый образец погружается в раствор, содержащий флуоресцентную краску, которая попадает во все трещины. После очистки поверхности образец покрывается новым раствором. Если покрытие имеет какие-либо дефекты, флуоресцентная краска в этом месте будет видна под ультрафиолетовым облучением.

Обе методики, основанные на впитывании, применяют только для выявления поверхностных дефектов. Внутренние дефекты при этом не обнаруживаются. Дефекты, лежащие на самой поверхности, выявляются с трудом, поскольку при обтирании поверхности перед нанесением индикатора краска с них удаляется.

Радиографический контроль

Контроль проникающим излучением используют для выявления пор, трещин и раковин внутри покрытия. Рентгеновские и гамма-лучи проходят через испытуемый материал и попадают на фотопленку. Интенсивность рентгеновского и гамма-излучения изменяется при прохождении их через материал. Любые поры, трещины или изменения толщины будут регистрироваться на фотопленке, и при соответствующей расшифровке пленки можно установить положение всех внутренних дефектов.

Радиографический контроль сравнительно дорог и протекает медленно. Необходима защита оператора от облучения. Трудно анализировать изделия сложной формы.

Токовихревой контроль

Поверхностные и внутренние дефекты можно определять с помощью вихревых токов, индуцируемых в изделии внесением его в электромагнитное поле индуктора. При перемещении детали в индукторе, или индуктора относительно детали индуцированные вихревые токи взаимодействуют с индуктором и меняют его полное сопротивление. Индуцированный ток в образце зависит от наличия дефектов проводимости образца, а также его твердости и размера.

Применяя соответствующие индуктивности и частоты или их сочетание, можно выявить дефекты. Контроль вихревыми токами нецелесообразен, если конфигурация изделия сложна. Контроль этого вида непригоден для выявления дефектов на кромках и углах; в некоторых случаях от неровной поверхности могут поступать те же сигналы, что и от дефекта.

Ультразвуковой контроль

При ультразвуковом контроле ультразвук пропускают через материал и измеряют изменения звукового поля, вызванные дефектами в материале. Энергия, отраженная от дефектов в образце, воспринимается преобразователем, который превращает ее в электрический сигнал и подается на осциллограф.

В зависимости от размеров и формы образца для ультразвукового контроля используют продольные, поперечные или поверхностные волны. Продольные волны распространяются в испытуемом материал прямолинейно до тех пор, пока они не встретятся с границей или несплошностью. Первая граница, с которой встречается входящая волна, -граница между преобразователем и изделием. Часть энергии отражается от границы, и на экране осциллографа появляется первичный импульс. Остальная энергии проходит через материал до встречи с дефектом или противоположной поверхностью, положение дефекта определяется измерением расстояния между сигналом от дефекта и от передней и задней поверхностей .

Несплошности могут быть расположены так, что их можно определить, направляя излучение перпендикулярно к поверхности. В этом случае звуковой луч вводится под углом к поверхности материала для создания поперечных волн.

Если угол входа достаточно увеличить, то образуются поверхностные волны. Эти волны проходят по контуру образца и могут обнаруживать дефекты близ его поверхности.

Таблица 5

№ п/п

Метод контроля

Цель и пригодность испытания

1

Визуальное наблюдение

Выявление поверхностных дефектов покрытия визуальным осмотром

2

Капиллярный контроль (цветной и люминесцентный)

Выявление поверхностных трещин, пор и аналогичных дефектов покрытия

3

Радиографический контроль

Выявление внутренних дефектов покрытия

4

Электромагнитный контроль

Выявление пор и трещин, метод не пригоден для выявления дефектов в углах и кромках

5

Ультразвуковой контроль

Выявление поверхностных и внутренних дефектов, метод не пригоден для тонких слоев и для выявления дефектов в углах и кромках