Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
13
Добавлен:
16.12.2013
Размер:
102.4 Кб
Скачать

0

100

200

300

400

500

600

700

F3( )

0

16

30

43

55

67

78

90

x3( )

0

100

200

200

200

200

200

200

-x4

0

100

200

300

400

500

600

700

x4

0

16

30

43

55

67

78

90

0

0

0

90

100

10

88

200

17

84

300

23

78

400

29

72

500

34

64

600

38

54

700

41

41

x4*=x4(700)=0

x3*=x3(700-x4*)=x3(700)=200

x2*=x2(700-x4*-x3*)=x2(700-200)=x2(500)=300

x1*=700-x4*-x3*-x2*=700-0-200-300=200

x1=200

x2=300

x3=200

x4=0

Задача №5. Задача формирования оптимального портфеля ценных бумаг.

Исходные данные:

m0

m1

m2

1

2

2

4

6

7

8

Требуется сформировать оптимальный портфель заданной эффективности из 3-х видов ценных бумаг: безрисковых эффективности 2 и некоррелированных рисковых ожидаемой эффективности 4 и 6 и рисками 7 и 8. Необходимо узнать, как устроена рисковая часть оптимального портфеля и при какой ожидаемой эффективности портфеля возникает необходимость в операции short sale и с какими ценными бумагами?

4 49 0

m0=2, М= , V=

6 0 64

Зададимся эффективностью портфеля mp

Найдем обратную матрицу к V

1/49 0

V-1=

0 1/64

далее

4 1

M = I =

6 1

1/49 0 4 2 1/49 0 2 2/49

V-1(M-m0I)=  - =  =

0 1/64 6 2 0 1/64 4 1/16

2/49

(M-m0I)T V-1(M-m0I)=(2 4)  = 65/196

1/16

Рисковые доли:

x1*=(mp-2) 8/65=(mp-2) 0,12

x2*=(mp-2) 49/260=(mp-2) 0,19

Безрисковая доля:

x0*=1-(mp-2) 0,31

Найдем значение mp, при котором возникает необходимость в проведении операции short sale:

(mp-2) 0,31=1

mp-2=1/0,31

mp=3,21+2

mp=5,21

Следовательно, если mp>5,21 то x0*<0 и необходимо провести операцию short sale.

Задача №6. Провести анализ доходности и риска финансовых операций.

Даны четыре операции Q1, Q2, Q3, Q4. Найти средние ожидаемые доходы Qi и риски ri операций. Нанести точки (Qi, ri) на плоскость, найти операции, оптимальные по Парето. С помощью взвешивающей формулы найти лучшую и худшую операции.

(0, 1/5), (2, 2/5), (10, 1/5), (28, 1/5)

(-6, 1/5), (-5, 2/5), (-1, 1/5), (8, 1/5)

(0, 1/2), (16, 1/8), (32, 1/8), (40, 1/4)

(-6, 1/2), (2, 1/8), (10, 1/8), (14, 1/4)

Q1

0

2

10

28

1/5

2/5

1/5

1/5

Q2

-6

-5

-1

8

1/5

2/5

1/5

1/5

Q3

0

16

32

40

1/2

1/8

1/8

1/4

Q4

-6

2

10

14

1/2

1/8

1/8

¼

Q1=8,4 r1=10,4

Q2=-1,8 r2=4,7

Q3=16 r3=17,4

Q4=2 r4=8,7

(Q1)=2 Q1-r1=6,4

(Q2)=2 Q2-r2=-8,3

(Q3)=2 Q3-r3=14,6

(Q4)=2 Q4-r4=-4,7

Лучшей операцией является операция №3, худшей операцией является операция №2.

Оптимальной точки нет, так как нет ни одной точки, не доминируемой никакой другой.

Соседние файлы в папке Курсовики по прикладной математики