
- •1. Процесс научного познания. Гипотеза и теория.
- •2. Роль эксперимента. Экспериментальные ошибки.
- •3. Принцип фальсифицируемости и его значение для развития науки.
- •4. Понятие парадигмы. Научная революция.
- •5. Общая характеристика античной картины мира.
- •6. Общая характеристика механической картины мира.
- •7. Законы Ньютона и детерминизм Лапласа.
- •8. Общая характеристика современной картины мира.
- •9. Виды материи.
- •10. Фундаментальные взаимодействия и их краткая характеристика.
- •11. Микро-, макро- и мегамир. Фундаментальные законы.
- •12. Уровни организации материи.
- •13. Первое начало термодинамики.
- •14. Второе начало термодинамики. Понятие энтропии.
- •15. Открытые и закрытые системы в науке.
- •17. Самоорганизация сложных открытых систем.
- •18. Точки бифуркации.
- •19. Теория относительности Энштейна.
- •20. Современный взгляд на пространство-время.
- •22. Радиоактивность.
- •23. Теория Большого Взрыва.
- •24. Закон Хаббла и эффект Доплера.
- •25. Будущее Вселенной.
- •26. Галактики.
- •27. Антропный принцип и тонкая настройка Вселенной.
- •28. Звезды. Термоядерные реакции.
- •30. Развитие химии и основные законы.
- •31. Перспективные направления развития современной химии.
- •33. Биологический уровень организации материи.
- •34. Две функциональные системы живых организмов.
- •35. Происхождение жизни. Эволюция.
- •37. Мутации, их роль в эволюции.
- •39. Клонирование и моральный аспект современных биотехнологий.
- •35,40. Происхождение жизни. Эволюция. Происхождение человека.
- •40. Происхождение человека.
- •41. Последствия глобального перенаселения. Проблемы современного человечества.
- •42. Основные проблемы современной энергетики.
- •43. Теплоэлектростанции. Плюсы и минусы данного сектора энергетики.
- •44. Атомные электростанции. Плюсы и минусы данного сектора энергетики.
- •45. Гидроэлектростанции. Плюсы и минусы данного сектора энергетики.
- •47. Биосферный уровень организации материи.
- •48. Парниковый эффект и глобальное потепление.
- •49. Проблема разрушения озонового слоя.
- •50. Кислотные дожди.
17. Самоорганизация сложных открытых систем.
Самоорганизация - это присущая материи способность к усложнению эл-тов и созданию все более упорядоченных структур в ходе своего развития; в узком понимании - это скачок, фазовый переход сис-мы из менее в более упорядоченное состояние. В процессе усложнения систем различают два взаимодополняющих механизма: объединение частей и разделение (фракционирование) систем. В свете новой концепции иначе, чем раньше, решается вопрос о соотношении случайного и закономерного в развитии. Эволюционные этапы весьма жестко детерминированы, поведение сис-мы здесь предсказуемо и даже управляемо, если имеются необходимые управленческие средства. В критических же точках (точках бифуркаций), достигаемых системой на завершающих стадиях эволюционного процесса, господствует случайность. Примеры самоорганизации: биологические процессы (эволюция), социальные сис-мы (общество).
Необходимые условия самоорганизации:
Открытость сис-мы (взаимодействие с другими сис-мами, с окружающей средой) Формирование циклических процессов. Принцип колыбели. Самоорганизация не происходит везде, а лишь в отдельных, особо сложных частях. Сис-ма должна быть погружена в другую сис-му, более большую ( как бы в колыбели). Нет равноправия. Характер самоорганизации - глобальность деградации и локальность самоорганизации. Достаточно длительный срок. Системе проще ничего не делать, чем что-то делать. Сис-ма обычно находится в состоянии динамического равновесия, т.е. проходят какие-то процессы в системе, но в общем она не изменяется. Сис-ма должна быть достаточно далека от состояния термодинамического равновесия. Иначе больше вероятность деградации, чем самоорганизации.
18. Точки бифуркации.
Сложная неравновесная система может перейти из неустойчивого состояния в одно из нескольких устойчивых. В системе, пребывающей в критическом состоянии, развиваются сильные флуктуации (колебания), и одна из них способствует переходу в конкретное устойчивое состояние. Процесс скачка необратим. Критическая точка, в которой наиболее вероятен переход в новое состояние – точка бифуркации.
19. Теория относительности Энштейна.
Специальная теория относительности, принципы которой сформулировал в 1905 г. А.Эйнштейн, представляет собой современную физическую теорию пространства и времени, в которой, как и в классической ньютоновской механике, предполагается, что время однородно, а пространство однородно и изотропно. Специальная теория часто называется релятивистской теорией, а специфические явления, описываемые этой теорией, - релятивистским эффектом.
В основе специальной теории относительности лежат постулаты Эйнштейна:
принцип относительности: никакие опыты (механические, электрические, оптические), проведенные в данной инерциальной системе отсчета, не дают возможности обнаружить, покоится ли эта система или движется равномерно и прямолинейно; все законы природы инвариантны по отношению к переходу от одной инерциальной системы к другой;
принцип инвариантности скорости света: скорость света в вакууме не зависит от скорости движения света или наблюдателя и одинакова во всех инерциальных системах отсчета.
Специальная теория относительности потребовала отказа от привычных классических представлений о пространстве и времени, поскольку они противоречили принципу постоянства скорости света. Потеряло смысл не только абсолютное пространство, но и абсолютное время.
Общая теория относительности, называемая иногда теорией тяготения, - результат развития специальной теории относительности. Из нее вытекает, что свойства пространства- времени в данной области определяются действующими в ней полями тяготения. При переходе к космическим масштабам геометрия пространства- времени может изменяться от одной области к другой в зависимости от концентрации масс в этих областях и их движения