
- •Вопрос 1
- •Вопрос 2
- •Вопрос 3
- •Вопрос 4
- •Вопрос 5
- •Вопрос 6
- •Вопрос 7.
- •Вопрос 8.
- •Вопрос 9.
- •Вопрос 10.
- •Вопрос 11.
- •Вопрос 12.
- •Вопрос 13.
- •Микро-, макро- и мегамир.Человек и вселенная.
- •Структурные уровни организации материи.
- •Вопрос 14.
- •Вопрос 15.
- •Вопрос 16
- •Вопрос 17
- •Вопрос 18
- •Вопрос 20.
- •Вопрос 21.
- •Вопрос 26.
- •Вопрос 28.
- •Вопрос 29.
- •Вопрос 30
- •Вопрос 31
- •Вопрос 32
- •Вопрос 33.
- •Вопрос 34.
- •Вопрос 35
- •Вопрос 36
- •Вопрос 37
- •Вопрос 38.
- •Вопрос 39.
- •Вопрос 40.
- •Вопрос 41.
- •Вопрос 42.
- •Вопрос 43.
- •Вопрос 44.
- •Вопрос 45.
- •Принцип Паули
- •Вопрос 46.
- •Вопрос 47.
- •Вопрос 48.
- •Вопрос 49.
- •Вопрос 50.
- •Вопрос 51.
- •Вопрос 52.
- •Вопрос 53.
- •Вопрос 54.
- •Вопрос 55.
- •Вопрос 56.
- •Вопрос 57.
- •Вопрос 58.
- •Вопрос 60.
- •Вопрос 62.
- •Вопрос 63.
- •Вопрос 64.
- •Вопрос 66.
- •Вопрос 67.
- •Вопрос 68.
- •Вопрос 69.
Вопрос 48.
Цепные химические реакции, горение и взрыв.
Цепные реакции — это самоподдерживающийся химический процесс, при котором появляющиеся продукты принимают участие в образовании новых продуктов реакции, происходит в виде циклического повторения нескольких стадий с образованием активных частиц. Такими частицами могут быть атомы или свободные радикалы, обладающие неспаренным электроном.
Цепные реакции протекают с большой скоростью и иногда со взрывом. В цепных реакциях различают три стадии: зарождения, цепи, развития цепи и обрыва цепи.
На стадии зарождения цепи происходит oбpaзoвaние промежуточных продуктов, которыми могут быть атомы, ионы или нейтральные молекулы. На стадии развития цепи последовательно протекают реакции превращения и образования свободных радикалов. На стадии обрыва цепи происходит расходование промежуточных продуктов или их разрушение и прекращение реакции. Обрыв реакции может произойти самопроизвольно или под действием ингибиторов. К цепным реакциям относятся, например, окисление органических веществ кислородом, окисление водорода, фосфора, серы, реакции между водородом и хлором, между водородом и бромом и т.д.Большой вклад в разработку теории цепных реакций внес лауреат Нобелевской премии, академик Н.Н.Семенов.
Горение — это химическая реакция, при которой происходит окисление веществ с выделением теплоты и света. Горение и, следовательно, окисление возможны и без участия кислорода. Например, водород сгорает (окисляется) в газообразном хлоре и в парах брома, при этом соответственно образуются хлоро- и бромоводород. Для горения нужны горючее и окислитель. На практике в качестве окислителя могут быть галогены, рзон, пере-кисные соединения, нитросоединения и другие богатые кислородом соединения, а горючими — практически все органические вещества, многие металлы, водород.
Вопрос 49.
Масштабы химической индустрии.
Вопрос 50.
Неорганические и органические соединения. Эволюция и самоорганизация химических систем. Макромолекулы и зарождение органической жизни.
Неорганические и органические соединения.
Соединения углерода (за исключением некоторых наиболее простых) издавна получили название органических соединении, так как в природе они встречаются почти исключительно в организмах хвойных и растений, принимают участие в жизненных процессах или же являются продуктами жизнедеятельности или распада организмов. В отличие от органических соединений, такие вещества, как песок, глина, различные минералы, вода, оксиды углерода: угольная кислота, ее соли и другие, встречающиеся в неживой природе, получили название неорганических или минеральных веществ.
Деление веществ на органические и неорганические возникло вследствие своеобразия органических соединений, обладающих специфическими свойствами. Долгое время считалось, что углеродосодержащие вещества, образующиеся в организмах, в принципе невозможно получать путем синтеза из неорганических соединений.
Понятие самоорганизация означает упорядоченность существования материальных динамических, то есть качественно изменяющихся систем. Оно отражает особенности существования таких систем, которые сопровождаются их восхождением на все более высокие уровни сложности и системной упорядоченности или материальной организации.
Картина химического мира весьма отчетливо свидетельствует об отборе элементов. Сейчас известно около 8 млн химических соединений. 96% из них созданы природой из 6-18 основных элементов (Na,K,Ca,Mg,Fe,Si,Al,Cl,Cu,Zn), а из оставшихся 95 элементов таблицы Менделеева природа создала лишь 300000 неорганических соединений.
Определяющими факторами в отборе являются требования соответствия между строительным материалом и объектами с высокоорганизованной структурой. С химической точки зрения такие требования сводились к отбору элементов, способных к образованию прочных и энергоемких химических связей и лабильных, то есть легко подвергающихся гомолизу, гетеролизу или циклическому распределению. Поэтому углерод - органоген номер 1.
В ходе эволюции отбирались те структуры, которые способствовали резкому повышению активности и селективности действия каталитических групп.
На ранних стадиях
химической эволюции катализ вообще
отсутствовал. Условия высоких температур,
электрических разрядов и радиации
препятствовали образованию конденсированного
состояния. Первые проявления катализа
начинались при смягчении условий и
образовании первичных тел. Роль
катализатора возросла по мере того, как
физические условия приблизились к
земным. Но роль катализатора вплоть до
образования более или менее сложных
органических молекул оставалась
несущественной. Появление таких
относительно несложных систем, как
СНОН
а тем более аминокислот и первичных
сахаров было своеобразной некаталитической
подготовкой старта для большого катализа.
Роль катализа в развитии химических
систем после достижения стартового
состояния начала возрастать сравнительно
быстро. Отбор активных соединений
происходил в природе из тех продуктов,
которые получались относительно большим
числом химических способов и обладали
широким каталитическим спектром.