Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Теор.вер. (лекции) / Лекция 11

.doc
Скачиваний:
80
Добавлен:
10.02.2016
Размер:
154.11 Кб
Скачать

ЛЕКЦИЯ 11

Закон больших чисел

(продолжение)

  1. Теорема Бернулли

Пусть производится независимых испытаний, в каждом из которых вероятность появления события А равна р. Другими словами, пусть имеет место схема Бернулли. Можно ли предвидеть какова будет примерно относительная частота появлений события? Положительный ответ на этот вопрос даёт теорема, доказанная Я.Бернулли1, которая получила название «закона больших чисел» и положила начало теории вероятностей как науки2.

ТЕОРЕМА Бернулли: Если в каждом из независимых испытаний, проводимых в одинаковых условиях, вероятность р появления события А постоянна, то относительная частота появления события А сходится по вероятности к вероятности р – появления данного события в отдельном опыте, то есть

.

Доказательство. Итак, имеет место схема Бернулли, . Обозначим через дискретную случайную величину – число появлений события А в -ом испытании. Ясно, что каждая из случайных величин может принимать лишь два значения: 1 (событие А наступило) с вероятностью р и 0 (событие А не наступило) с вероятностью , то есть

()

Р

р

Нетрудно найти

,

.

Можно ли применить к рассматриваемым величинам теорему Чебышева? Можно, если случайные величины попарно независимы и дисперсии их равномерно ограничены. Оба условия выполняются. Действительно, попарная независимость величин следует из того, что испытания независимы. Далее3 при и, следовательно, дисперсии всех величин ограничены, например числом . Кроме того, заметим, что каждая из случайных величин при появлении события А в соответствующем испытании принимает значение, равное единице. Следовательно, сумма равна числу - появлений события А в испытаниях, а значит

,

то есть дробь равна относительной частоте появлений события А в испытаниях.

Тогда, применяя теорему Чебышева к рассматриваемым величинам, получим:

,

что и требовалось доказать.

Замечание 1: Теорема Бернулли является простейшим частным случаем теоремы Чебышева.

Замечание 2: На практике часто неизвестные вероятности приходится приближённо определять из опыта, то для проверки согласия теоремы Бернулли с опытом было проведено большое число опытов. Так, например, французский естествоиспытатель XVIII века Бюффон бросил монету 4040 раз. Герб выпал при этом 2048 раз. Частота появления герба в опыте Бюффона приближённо равна 0,507. Английский статистик К.Пирсон бросал монету 12 000 раз и при этом наблюдал 6019 выпадений герба. Частота выпадения герба в этом опыте Пирсона равна 0,5016. В другой раз он бросил монету 24 000 раз, и герб при этом выпал 12 012 раз; частота выпадения герба при этом оказалась равной 0,5005. Как видим, во всех приведённых опытах частота лишь немного уклонилась от вероятности 0,5 – появления герба в результате одного бросания монеты.

Замечание 3: Было бы неправильным на основании теоремы Бернулли сделать вывод, что с ростом числа испытаний относительная частота неуклонно стремится к вероятности р; другими словами, из теоремы Бернулли не вытекает равенство . В теореме речь идёт лишь о вероятности того, что при достаточно большом числе испытаний относительная частота будет как угодно мало отличаться от постоянной вероятности появления события в каждом испытании. Таким образом, сходимость относительной частоты к вероятности р отличается от сходимости в смысле обычного анализа. Для того чтобы подчеркнуть это различие, вводят понятие «сходимости по вероятности». Точнее, различие между указанными видами сходимости состоит в следующем: если стремится при к р как пределу в смысле обычного анализа, то, начиная с некоторого и для всех последующих значений , неуклонно выполняется неравенство ; если же стремится по вероятности к р при , то для отдельных значений неравенство может и не выполняться.

  1. Теоремы Пуассона и Маркова

Замечено, если условия опыта меняются, то свойство устойчивости относительной частоты появления события А сохраняется. Это обстоятельство доказано Пуассоном.

ТЕОРЕМА Пуассона: При неограниченном увеличении числа независимых испытаний, проводимых в переменных условиях, относительная частота появления события А сходится по вероятности к среднему арифметическому вероятностей появления данного события в каждом из опытов, то есть

.

Замечание 4: Нетрудно убедиться, что теорема Пуассона является частным случаем теоремы Чебышева.

Далее, закон больших чисел применительно к зависимым событиям был дан А.А.Марковым, который заметил, что рассуждения Чебышева позволяют получить более общий результат.

ТЕОРЕМА Маркова: Если последовательность случайных величин (как угодно зависимых) такова, что при

,

то, выполняется условие: .

Замечание 5: Очевидно, если случайные величин попарно независимы, то условие Маркова принимает вид: при

.

Отсюда видно, что теорема Чебышева является частным случаем теоремы Маркова.

  1. Центральная предельная теорема (Теорема Ляпунова)

Рассмотренные теоремы закона больших чисел касаются вопросов приближения некоторых случайных величин к определённым предельным значениям независимо от их закона распределения. В теории вероятностей, как уже отмечалось, существует другая группа теорем, касающихся предельных законов распределения суммы случайных величин. Общее название этой группы теорем – центральная предельная терема. Различные её формы различаются условиями, накладываемыми на сумму составляющих случайных величин. Впервые одна из форм центральной предельной теоремы была доказана выдающимся русским математиком А.М.Ляпуновым в 1900 году с использованием специально разработанного им метода характеристических функций.

ТЕОРЕМА Ляпунова: Закон распределения суммы независимых случайных величин приближается к нормальному закону распределения при неограниченном увеличении (то есть, при ), если выполняются следующие условия:

  1. все имеют конечные математические ожидания и дисперсии: (, где );

  2. ни одна из случайных величин по степени своего влияния на всю сумму случайных величин не отличается от остальных (то есть, влияние каждой из случайных величин на всю сумму ничтожно мало. Другими словами выполняется условие: ).

Тогда

,

где .

Следует отметить, что центральная предельная теорема справедлива не только для непрерывных, но и для дискретных случайных величин. Практическое значение теоремы Ляпунова огромно. Опыт показывает, что закон распределения суммы независимых случайных величин, сравнимых по своему рассеиванию, достаточно быстро приближается к нормальному. Уже при числе слагаемых порядка десяти закон распределения суммы можно заменить на нормальный (в частности, примером такой суммы может быть среднее арифметическое наблюдаемых значений случайных величин, то есть ).

Частным случаем центральной предельной теоремы является теорема Лапласа. В ней, как вы помните, рассматривается случай, когда случайные величины дискретны, одинаково распределены и принимают только два возможных значения: 0 и 1.

Далее, вероятность того, что заключено в интервале можно вычислить по формуле

.

Используя функцию Лапласа, последнюю формулу можно записать в удобном для расчётов виде:

,

где .

ПРИМЕР. Пусть производится измерение некоторой физической величины. Любое измерение даёт лишь приближённое значение измеряемой величины, так как на результат измерения оказывают влияние очень многие независимые случайные факторы (температура, колебания прибора, влажность и др.). Каждый из этих факторов порождает ничтожную «частную ошибку». Однако, поскольку число этих факторов очень велико, совокупное их действие порождает уже заметную «суммарную ошибку».

Рассматривая суммарную ошибку как сумму очень большого числа взаимно независимых частных ошибок, мы вправе заключить, что суммарная ошибка имеет распределение, близкое к нормальному. Опыт подтверждает справедливость такого заключения.

1 Доказательство впервые было опубликовано в 1713 году.

2 Доказательство, предложенное Я.Бернулли, было сложным; более простое доказательство было дано П.Чебышевым в 1846 году.

3 Известно, что произведение двух сомножителей, сумма которых есть величина постоянная, имеет наибольшее значение при равенстве сомножителей.

5

Соседние файлы в папке Теор.вер. (лекции)