
Martynyuk_A_N_Diskretnaya_matematika
.pdf(x1 x2) ( x1 x2) (( x1 x2) (x1 x2)) ((x1 x2) ( x1 x2)) ((( x1 x2) (x1
x2)) ( x1 x2)) = 0.
4 ' "&
(x1 x2) ( x1 x2) (x1 x2) ((x1 x2)(x1 x2)) ((( x1 x2) (x1 x2))(x1 x2)) = x1 x2 (x1 x2) (x1 x2) = x1 x2 = 0.
0'$ &$ 0 ' ( (, % x1 = 0 x2 = 0. +,
= (x1 = 0, x2 = 0) % & ' ’ ' ( ' & ( ".
- 9 + 8 9 ' .
>. 1 P f(x1 ... (k, y1(x1, x2, …, xk), ....., m(x1, x2, …, xk)) '
' $ 1, ..., m, 8 % P 1(x1, x2, …, xk), ....., m(x1, x2, …, xk), , 8 f(x1 ... (k, y1(x1, x2, …, xk), ....., m(x1, x2, …, xk)) = 0
. 8 4 : 6 9 6 6 ( 1, ... m), 9 5 8
4 8 6 9 + 6 6
x1, ..., 6k, A 5 + 5 5: +.
+H . % ,
1.Y $' % b ?
2.S ' " ' ’ % b( '?S
' '?
3.Y ’ % b( '?
4.S & & % b( '?
5.Y $' % $ $?
6.S ' ' ’ % b( "? S
' '?
7.S & & % b(
"?
8.S P & ( '?
9.S ' % b( ' "?
10.S ( & ' & ' % b( '
"?
11.S P $' % ' ?
% +
+
1.1 ( 0., 4 ( P „. 0 b & b. – A.: c &, 1986. - N.60-61.
0 ( '
2.A & & & ' ( % & «+ & » & & P P ( 6.0804,
6.0915 / +.A. A$ . – +&: +E43, 2004. - .2. – N.75-76.
181
? 35. B " # : ?, D #
" %
& % ( , ( & ( " & P . % ( , " ( & ",
( % ( ( & ( & P , ( , 8 & $' & & % ( P " ( & ( (.
3 & & :
35.1.> % "
35.2.A & ( & % "
35.3.0 " %
35.4.1 & P ( &
35.1. "+ G + E . C
-6 5 4 X = (61, x2,..., 6i,...,xn) 8 y = F(`) = F(61, x2,..., 6i,...,xn), 8 6 6
61, x2,..., 6i,...,xn. D A 6 6i : : 6i, 6
8 y = F(61, x2,..., 6i,...,xn). 1 9 ,
6 6 8 4 + 5 + 5, A : 8
8 .
>. 1 " P F((1,x2,...,(i,...,xn) 8 & (i (d/d(i – %
( &, ) ' &
d(x)/d(i = F(x1, (2,..., (i,...,xn) [ F(x1, x2 ,..., (i,...,(n)
3 : 2 4 8 ™ 4, 6 + 5 9 8 .
; G + E . C |
|
|
|
|
||||
1. |
d( |
)/d(i = d F( )/d(i |
|
|
|
|
|
|
2. |
d( |
)/d(i = d( )/d (i |
|
|
|
|
|
|
3. |
d(d( |
)/d(j)/d(i = d(d( |
)/d(i)/d(j |
|
|
|
||
4. |
d(F( |
)G(X))/d(i |
= |
F( )(d( )/d(i) |
[ |
G( )(d( )/d(i) |
[ |
[ (d( )/d(i)(d( )/d(i)
5. |
d(F( |
)+G(X))/d(i |
= |
F( |
)(d( )/d(i) |
[ G( )(d( )/d(i) |
[ |
[ (d( )/d(i)(d( |
)/d(i) |
|
|
|
|
|
|
6. |
d(F( |
)[G(X))/d(i = (d( |
)/d(i) [ (d( |
)/d(i) |
|
|
B 9 + 5 8 6 6 8 . -8 5C 9 + + 8 : 5 1, A
6 8 4 + 5 6 5 4 (61, x2,..., 6i,...,xn) (61, x2,...,6i,...,xn) 5 0, A 6 6 8 4 + 5.
3 : C 5 8 6 4 6 6 :
9 .
>. 1 P F(„) ' & i, 8
F(„) $' i , % 8 F((1, x2,..., (i,...,xn) = F((1,
x2,..., (i,...,xn).
-6 F(`) 9 5 6i 5 , F(`)
9 5 6i 6 6 C 6 6. 1 5 :, A 6i : F(`).
1 + 8 +, 9 9
+, A : 4 4 F(F = 0.
182

. r + F(s) / / 0 i , + *
d(s)/d i = 0.
- 4 A 9 9 5
9 . |
) . + ; H * i |
|||
7. |
d( )/d(i = |
V 0, , S F( |
||
W 1, , S F( |
) . + ; H * i. |
|
||
8. |
d(F( |
)G(X))/d(i = F( )(d( )/d(i), , S F( ) . + ; H * i. |
||
9. |
d(F( |
)+G(X))/d(i = F( )(d( |
)/d(i), , S F( ) . + ; H * i. |
D 9 9 A :
10.? S d( )/d(i = 0, .$ (i + .$'N F( ) .
11.? S d( )/d(i = 1, .$ (i . ;* .$'N F( ) .
12.? S d( )/d(i = G( ), .$ (i G * + .$ F( ) % G( ) = 1.
4 &. E ( " ( (&. . 35.1). A , (
( &
. 35.1. ( & &
( & (1 ( &
9 P &$ % š & '
d(„)/d(i = (x1x2+x3) [ ( x1x2+x3) = x1x2 [ x3 [ x1x2x3 [ x1x2 [ x3 [ [x1x2x3 =
x2 x3
+& " ` &` & " &$ % "
d(x1,x2,x3)/d(i = d(x1x2+x3)/d(i = x3d(x1x2)/d(i = x2 x3d(x1)/d(i = x2 x3
35.2. * . ( *; , G + E . C
0 C 6 9 8 , A + 5
8 . D A F(`) , 8
. ( 9 8 5C 8 d(`)/d6i
8 .
>. 1 " $ P F((1,x2,...,(i,...,xn) 8 & (i '
&
d(x)/d(i = F(x1, (2,..., 1,...,xn) [ F(x1, x2 ,..., 0,...,(n),
& & % &'-( (i, 1 , i , n.
? 8 d(`)/d6i : 5 2 6 , C 6 : F(`)
6i = 1, 4 F(`) 6i = 0.
|
T 5 6 5 9 : 5 9 |
|
|
|
||||||
|
d(`)/d6i |
= |
(6i(x1, |
62,..., |
1,...,xn) |
[ |
6i(x1, |
62,..., |
0,...,xn)) |
[ |
[ |
( 6i(x1, |
|
62,..., |
1,...,xn) |
[ |
6i(x1, |
62,..., |
0,...,xn)) |
= |
|
= |
(6i [ 6i)(F(x1, |
62,..., |
1,...,xn)) |
[ ( 6i |
[ |
6i)(F(x1, |
62,..., |
0,...,xn)) |
= |
= (F(x1, 62,..., 1,...,xn)) [ (F(x1, 62,..., 0,...,xn)).
4 &. E ( " & P F((1, x2, x3) = x1 x2+x3, % d((1, x2,
x3)/d(2.
d((1, x2, x3)/d(2 = ( x10 + x3) [ ( x11 + x3) = x3 [ ( x1 + x3) =
=x1 [ (1 x3 = (1 x3.
35.2.1.*
. C + 8
d(x)/d6i = F(x1, 62,..., 6i,...,xn) [ F(x1, x2 ,..., 6i,...,6n)
183

* 9 8 : F(x1, 62,..., 6i,...,xn), C F(x1, x2 ,...,6i,...,6n). 1 + 5 + 2. 0 5 :
d(x)/d6i.
: 5 + 8 + , A + :
6 , 8 5- 4 9 F G 9 8
4 + 9 F G.
4 &. E ( " & P F((1, x2, x3) = x1 x2+x3, % d((1, x2, x3)/d(2 & _ .
0 (% .. 35.1 35.2) &$' & 2 % % . 35.3.
|
|
|
|
|
|
. % 35.1 |
|
|
F |
x1,x2 |
00 |
01 |
11 |
10 |
|
|
x3 |
|
|
|
|
|
|
|
0 |
|
1 |
|
|
|
|
|
1 |
|
1 |
1 |
1 |
1 |
|
|
|
|
|
|
|
|
|
x1 x2+x3 |
|
|
|
|
. % 35.2 |
||
|
|
|
|
|
|
||
|
F |
x1,x2 |
00 |
01 |
11 |
10 |
|
|
x3 |
|
|
|
|
|
|
|
0 |
|
|
1 |
|
|
|
|
1 |
|
1 |
1 |
1 |
1 |
|
x1x2+x |
3 |
|
|
|
|
. % 35.3 |
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
F |
x1,x2 |
00 |
01 |
11 |
10 |
|
|
x3 |
|
|
|
|
|
|
|
0 |
|
1 |
1 |
|
|
|
|
1 |
|
|
|
|
|
|
x1 x3
+, d((1, x2, x3)/d(2 = x1 x3.
35.2.2. * ` >
* : 8 5- 8 F(x) 6 , A + 5 + 2. 0 5 + 5 : 5 5 + +, A
+ : (¥-z).
2 9 ¥-z 4 + 5 4, 5 9 4 : 5 5 . .5 d(`)/d6i
5 6 :
1.F(`) : 5 ¥-z 4 + 4 9 4 4
F(`) .
2.2 ¥-z + 5 9 8 ,
, 4 4 6 5 5 d(`)/d6i.
4 &. 0 P$ Cn = an bn + (an+ bn)Cn-1, % dNn/dCn-1. E ` Cn $' ŒE- (% . 35.4).
|
|
|
|
|
. % 35.4 |
||
|
|
|
|
|
|
|
|
|
Cn a1,b2 |
00 |
01 |
11 |
10 |
|
|
|
Cn-1 |
|
|
|
|
|
|
|
0 |
|
|
1 |
|
|
|
|
1 |
|
1 |
1 |
1 |
|
|
+, Cn = an bn [ anCn-1 [ bnCn-1,
dCn/dCn-1 = d(an bn [ d(anCn-1)/dCn-1 [ d(bnCn-1)/dCn-1)/dCn-1 = = 0 [ an [ bn = an [ bn.
184

D, , 9 A 5 8
13. ? S F(x) = A(X) +xi(X) + xi(X), * A(X), B(X) C(X) . + ; H * xi, % *+
d( )/d(i = A(X)(B(X) [ C(X))
35.3. * E G + . C,
> 5 6 + 5 6
6 . < 6 6 9 8 4 +
8 .
>. 4 & "$ % $ $ P F((1,x2,...,(i,...,(j,...,xn) 8 & (
(i (j ' &
d2F(„)/d(id(j = F(x1, (2,..., (i,...,(j,...,xn) [ F(x1, x2 ,..., (i,..., (j,...,(n). |
|
||||||||||
4 &. E ( " & P F(X) = x1+x2+x3, & %, 8 |
|
||||||||||
d2F(x)/d(id(j |
= |
|
(x1+x2+x3) |
[ |
|
( x1+ x2+x3) |
= |
||||
= (x1+x2+x3)( x1+ x2+x3) |
+ |
|
(x1+x2+x3) |
|
( x1+ x2+x3) |
= |
|||||
= x1 x2 x3+ x1x2 x3 = x3( x1 x2+ x1x2). |
|
|
|
|
|
|
|||||
4 d((1, x2, x3)/d(2 |
& |
_ & (% .. 35.5 35.6) |
|||||||||
&$' & 2 " % (% .. 35.7) |
|
|
|
|
|||||||
d2F(„)/d(id(j = F(x1, (2, (3) [ F( x1, x2, (3). |
|
|
|
. % 35.5 |
|
||||||
|
|
|
|
|
|
|
|
|
|
||
|
F |
x2,x3 |
|
00 |
|
01 |
|
11 |
10 |
|
|
|
x1 |
|
|
|
|
|
|
|
|
|
|
|
0 |
|
|
|
|
1 |
|
1 |
1 |
|
|
|
1 |
|
|
1 |
|
1 |
|
1 |
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
. % 35.6 |
|
|
|
F |
x2,x3 |
|
00 |
|
01 |
|
11 |
10 |
|
|
|
x1 |
|
|
|
|
|
|
|
|
|
|
|
0 |
|
|
1 |
|
1 |
|
1 |
1 |
|
|
|
1 |
|
|
1 |
|
1 |
|
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
. % 35.7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
F |
x2,x3 |
|
00 |
|
01 |
|
11 |
10 |
|
|
|
x1 |
|
|
|
|
|
|
|
|
|
|
|
0 |
|
|
1 |
|
|
|
|
|
|
|
|
1 |
|
|
|
|
|
|
|
1 |
|
|
+, d2F(x)/d(id(j = x3( x1 x2+ x1x2).
3 4 4 , ,
d(d(x)/d6j)/d6i, 8
d2F(`)/d6id6j d(d(x)/d6j)/d6i
>. 1 P F((1,x2,...,(i,...,(j,...,xn) ' & ( (i (j, 8 F((1,x2,...,(i,...,(j,...,xn) $' (i (j , %, 8
F((1,x2,...,(i,...,(j,...,xn) = F((1,x2,..., (i,..., (j,...,xn)
. r + F(s) / / i j, + *
d2F(s)/d id j = 0.
1 5 6i 6j, A , A 5 8 9
6i 8 6j.
? , 9 :
1.0 6i 6j
185
d2F(`)/d6id6j |
= |
d(`)/d(6i6j) |
= |
=F(61,x2,...,6i,...,6j,...,xn) [ F(61,x2,..., 6i,..., 6j,...,xn).
2.0 8 6i, 8 6j
d(`)/d(6i[6j) = = d(`)/d6i + d(`)/d6j.
3. 0 8 6i, 8 6j, 8 6i 6j
d(`)/d(6i+6j) = = d(`)/d(6i[6j) + d(`)/d(6i6j).
35.4. B + % ( * E * / C +
>. o$ % $ ( &$ df(x)/dxi P f(x) & ( (0, (1, .. ., (i,
..., ( " (i & & & $ 2 & f(x):
ðf(x)/ ð(i = f(x0, (1,..., (i,...,xn) [ f(x0, x1 ,..., (i,...,(n)
? 9 + : 3.:
ðf(x)/ ð6i = f(x0, 61,... , 6i-1, l, 6i+1,…, xn) [f(x0, 61,... , 6i-1, 0, 6i+1,…, xn)
>. o % & P (10) P dXi f(x) '
P f(x) xi, dxi:
dXi f(x) = f(x) [ f(xi [ dxi )
= : 9 5 9 32 + 8 + 6 +:
dXi f(x) = (ðf(x)/ ð6i)d6i.
1 8 6 (3.) + 2
. v 32 : + + 8 6 dxi
: 9 .
-8 5C 9 5 3. 4 : , A 3.
+: , f(x) + 5 4 8 4
xi. 3. +: +, f(x) : 4
8 4 xi.
? 9 C 8 .
>. 4 % & P P f(x) '
P ( & X d: ðf(x)/ðX = df(x) = f(x) [ f(X [ d)
= : 4 32: ðf(x) = [ al (ðf(x)/ðXl)dXl
D A (X0, X1) : 8 + 6 4 X, ðf(d0 = 1, d1 = 0) = f(X0, X1) [ f(X0, X1) 9 Rf(x)/RX0 f(x) 6 . <
4 + Rf(x)/RX0 8 : 5 '+ 6
:
df(x) = l (Rf(x)/RXl) d1 (0<l<=2n-1)
= + 5 9 9 6:
Rf(x)/RX0 = [ al ðf(x)/ðXl |
(0<l<=2p-1) |
ðf(x)/ðX0 = l Rf(x)/RXl0 |
(0<l<=2p-1), |
p — 6 „0 .
3 , C, : : + 5
1 0, 8 0 1.
>. 1 & P , " % '` df(x), % $ P$, 8 &$ 1, & " ' &, f(x) $' „ 0 1. 1 & P , " ` df(x), % $ P$, 8 &$ 1, & "
' &, f(x) $' X 1 0.
<5 : ' 9 : : 32:
>df(x) = f(x)df(x); Tdf(x) = f(x)df(x).
186
* 9 4 : 32 (32) 6 : 6
8 œ6 6 6 (3.) 9 6 . < 6 ’ 9
: : 32 9 C 9 32 32:
>dxi f(x) = f(x)dxi f(x);
Tdxi f(x) = f(x)dxi f(x) .
1 + 9 9 3. 32, C 5 9
32 32 9 4
>dxi f(x) = f(x) (ðf(x)/ð6i) dxi; Tdxi f(x) = f(x) (ðf(x)/ð6i) dxi.
>. o$ % $ ( &$, $ % '` >ðf(x)/ð(i,
' & f(x) (ðf(x)/ð(i). o$ % $ ( &$, $
` Tðf(x)/ð(i, ' & f(x) (ðf(x)/ð(i).
<6 5 C 5 9 32 32 32 9 4
>dxi f(x) = (>ðf(x)/ð6i) dxi;
Tdxi f(x) = (Tðf(x)/ð6i) dxi.
. C 32 9 3., 9 9 :
>ðf(x)/ð6i = f(xi)f( xj); Tðf(x)/ð6i = f(xi) f( xj) .
0’ 6 5, A +: 1, : 8 6 6 6, 6
xj 9 5 0 1 8 1 0. . 5 xi 9 0 1 , 1 0, 8 : : +.
: (i 5 6 C 5 12:
>dxi f(x) = f(xi=1) f(xi=0) >dxi f(xi=1) f(xi=0) Tdxi; Tdxi f(x) = f(xi=1) f(xi=0) Tdxi f(xi=1) f(xi=0) >dxi.
>. 4$ $ % $ ( &$ [ðf(x)/ð(i] '
& f(xi=1) f(xi=0), 8 , ( & P dxi " dxi f(x)$' & $. +%$ $ % $ ( &$ [ðf(x)/ð(i]0
& f(xi=1)f(xi=0), 8 , ( & P dxi " dxi f(x)$' $.
< 5 32 :, A ’ C 4 9, , A 3. +: , : 4 6, A : 8
+, C 6 , ’ , 4 4
, A 3. +: 1, : C 6 : [ðf(x)/ð6i] = f(xi = 1) f(xi=0) = 1;
[ðf(x)/ð6i]0 = f(xi = 1) f(xi=0) = 1.
D A + f(x) 4 f(x) = xi f(xi = 1) xi f(xi = 0), 9
9 9 3. 8 3.:
Tðf(x)/ð6i = 6i [ðf(x)/ð6i] 6i [ðf(x)/ð6i] ;
>ðf(x)/ð6i = 6i [ðf(x)/ð6i] 6i [ðf(x)/ð6i] .
: 8 6 + 5 5 3. + 5
6 . ( ' 9 5 3..
1. |
T ðf(x)/ð(i = >ðf(x)/ð(i; |
> ðf(x)/ð(i = Tðf(x)/ð(i. |
|
2. |
Tðf( x)/ð(i = >ðf(x)/ð(i; |
>ðf( x)/ð(i = Tðf(x)/ð(i. |
|
|
3. |
Tð(f(x)g(x))/ð(i = g(x) Tðf(x)/ð(i f(x) Tðg(x)/ð(i. |
|
4. |
>ð(f(x)g(x))/ð(i = g( x) >ðf(x)/ð(i f( x) >ðg(x)/ð(i. |
||
5. |
Tð(f(x) g(x))/ð(i = g( x) Tðf(x)/ð(i f( x) Tðg(x)/ð(i. |
||
6. |
>ð(f(x) g(x))/ð(i = g(x) Tðf(x)/ð(i f(x) >ðg(x)/ð(i. |
187
7. Tð(f(x) [ g(x))/ð(i = g(x) g( x)Tðf(x)/ð(ig(x) g( x) >ðf(x)/ð(i f(x) f( x)Tðg(x)/ð(i
f(x) f( x) >ðg(x)/ð(i.
8. >ð(f(x) [ g(x))/ð(i = g(x) g( x)>ðf(x)/ð(ig(x) g( x)Tðf(x)/ð(i f(x) f( x)>ðg(x)/ð(i
f(x) f( x)Tðg(x)/ð(i.
1 8 3. 9 6 C 5.
9. [ð f(x)/ð(i]% = [ðf(x)/ð(i]% |
[ð f(x)/ð(i]% = [ðf(x)/ð(i]% |
10. [ðf( x)/ð(i]% = [ðf(x)/ð(i]% |
[ðf( x)/ð(i]% = [ðf(x)/ð(i]% |
11.[ð(f(x)g(x))/ð(i]% = g(x=1)(ðf(x)/ð(i]n f(x=1)(ðg(x)/ð(i]n
12.[ð(f(x) g(x))/ð(i]% =g(x=0)(ðf(x)/ð(i]%
f(x=0)(ðg(x)/ð(i]%
13.[ð(f(x) g(x))/ð(i]% = g(x=0)(ðf(x)/ð(i]n
f(x=0)(ðg(x)/ð(i]n.
14.[ð(f(x) g(x))/ð(i]% = g(x=1)(ðf(x)/ð(i]%
f(x=1)(ðg(x)/ð(i]%
15.[ð(f(x) [ g(x))/ð(i]% = g(x=1) g(x=0)(ðf(x)/ð(i]n
g(x=1)g(x=0)(ðf(x)/ð(i]% f(x=1) f(x=0)(ðg(x)/ð(i]n
f(x=1)f(x=0)(ðg(x)/ð(i]%
16.[ð(f(x) [ g(x))/ð(i]o = g(x=1) g(x=0)(ðf(x)/ð(i]o
g(x=1)g(x=0)(ðf(x)/ð(i]n f(x=1) f(x=0)(ðg(x)/ð(i]o
f(x=1)f(x=0)(ðg(x)/ð(i]n
4 &. A % +10 " +14 $ (2 P
f(x) = (1(2 (2(3.
1 ( &, `, $ (2 &$ Tðf(() /ð(2 = (xtx2
(2x3) (x1 x2 (2(3) = (1(2 (3, (1 (2(3. ) & % (1 = 1, (2 = 1, (˜ = 0 (1 = 0, (2 = 0, (3 = 1 $' P & (2. 4 ' (2
( 1 0 % 110 % 0 1 % 001) & ' & P 1 0. 1 ( &, % '`, " (2 &$ >ðf(() /ð(2 = (xtx2(2x3) (x1 x2 (2(3) = (1(2(3, (1 (2 (3. ) & (2 1 0 % 011 %
(2 0 1 % 100 & ' & P 0 1. |
|
|
||||||
(1(2. |
4 " % +14 & (2 $' & [ðf(() /ð(2]n = (1 (2; [ðf(() /ð(2]o = |
|||||||
o +10 $' Tdx2 f(x) = (Tðf(() /ð(2)dx2 = (x1x2 x3 x1 x2 x3)dx2 = |
||||||||
|
||||||||
x1x3 |
Tdx2 |
|
x1 x3 |
>dx2; |
>dx2 |
f(x) |
= |
|
=(>ðf(() /ð(2)dx2 = ( x1x2x3 x1 x2 x3)dx2 = x1x3 |
Tdx2 x1 x3 >dx2. ) +10, |
|||||||
`, %, 8 P 1 0 & ' $ (2 1 0 (1 = 1, (3 = |
||||||||
0 |
|
% |
|
|
$ |
|
(2 |
0 1 (1 = 0, (3 = 1. +10, " % '`, &$ 1 (2 1 0 x1 = 0, (3 = 1 % (2 0 1 (1 = 1, (3 = 0.
+H % ,
1.Y % $ $?
2.S % ?
3.o &$' _ „ N & % ?
4.Y & "$ % $ $?
5.Y ' & % ( &$ & P ?
6.o &$' % & P & (?
7.S ' P " ( &?
188
8.Y ' % & P " ( &?
9.3 ( ( ( % ( ( & (
& P ?
% +
+
1.N -. A &b % ` % % c>A. – A.: A, 1974. -
N.32-41.
0 &
2.1 ( 0., 4 ( P „. 0 b & b. A.: c &, 1986. - N.66-167.
0 ( '
3.A & & & ' ( % & «+ & » & & P P ( 6.0804, 6.0915 / +.A. A$ . – +&: +E43, 2001. – N.45-50.
189
? 36. A # "
" %
% &.
&, - , , &,
. ) & & ( P, P ,
&.
3 & & :
36.1.> &
36.2.&
36.3.4
36.1. " + + , % *
-6 M 1 - , A 9 5 8 («1»)
(«0»). D A , 9
4 + 6 4 6 .
4 &. 9 - «S & »,
|
> - «S &», |
|
9&> - «S & &». |
D A , 4 . < |
|
9 + 5 4 5 6 8':. |
|
4 &. |
9 - «. ' % '` », |
|
> - «A & », |
N - «A ' » 9£>£N.
< 4 : 5 5
8':, 6 , : 5 &. . : 8 + 4 + 0(6), A 8 9 «0» «1»,
6 4 9 5 8 9 * 8':,
+ 5 8 + , 8 6 *.
( 4 5 9 8 9 + 8 4 5 6 6 61, 62,..., 6n, A + 5 9 X 6 9 X1, X2,…, 9
0(61, 62,..., 6n).
36.2. F % *
M 4 6 , 6 9 5
8 5-6 6 6 9, 8 5 5 6
8 9 9.
>. N- & ' & & &
P & n & ((1, (2,.., (n) % $ ' {0, 1}.
M 4 N-4, 8 N-4 + 5 8 + 8':
8 ` (6 `) + 5 & .
6 + 5 & ". .
++ 5 4 6 5, + 5 . |
|
|
|
||
>. |
. : ) & |
& |
|
% |
; |
b) f(f1, f2,... fn), |
8 f – P ' |
|
f1, |
f2,... fn |
– ; |
c) & " , & a), b). |
|
|
|
|
|
4 &. |
((1, (2) - «(1, (2 - », & (1, (2 „, „ - ' ( |
||||
. 3 & (2, 3)=0, % , (2, 4)=1, % |
|
. A 4 «6 » 4 « » N- 0(61, 62,..., 6n) +: 5 (N-1)- 0(61, 62,..., ,..., 6n) 6 9
190