
- •Технология лекарств
- •Под редакцией академика а. И. Тихонова
- •Часть первая общие вопросы технологии лекарств
- •Глава 1
- •Технология лекарств как научная дисциплина
- •Основные термины и понятия технологии лекарств
- •Понятие о лекарственой форме и лекарственном препарате
- •Глава 2 исторические данные о развитии технологии лекарств
- •Технология лекарственных препаратов в древнюю эпоху
- •Технология лекарственных препаратов в средние века (V—XII)
- •Технология лекарственных препаратов в период XIII—XVIII вв.
- •Технология лекарственных препаратов в период XIX—XX вв.
- •Глава 3 общие сведения о биофармации и ее значение для теории и практики технологии лекарств
- •Фармацевтические факторы и их содержание
- •Понятие о биологической доступности лекарственных веществ
- •Глава 4 аптека, ее задачи и функции
- •Устройство и оборудование аптеки
- •Требования к производственным помещениям и оснащению аптек
- •Глава 5 государственное нормирование производства лекарственных препаратов
- •Право на приготовление лекарственных препаратов (на фармацевтическую работу)
- •Нормирование состава прописей лекарственных препаратов
- •Нормирование качества лекарственных средств
- •Нормирование условий и технологического процесса приготовления лекарственных препаратов
- •Глава 6 лекарственные средства ядовитые и сильнодействующие лекарственные средства
- •Понятие о дозе лекарственных средств
- •Пути введения лекарственных препаратов в организм
- •Глава 7 классификация лекарственных форм
- •Классификация лекарственных форм по агрегатному состоянию, способу применения и путям введения
- •Дисперсологическая (технологическая) классификация
- •Дисперсологическая характеристика лекарственных форм по а. С. Прозоровскому
- •Глава 8 тара и укупорочные материалы, применяемые в аптечной практике
- •Материалы, применяемые для изготовления тары
- •Укупорочные материалы
- •Мойка и обеззараживание посуды
- •Глава 9 измерения по массе и объему в аптечном производстве лекарств
- •Дозирование по массе
- •Метрологические свойства весов
- •Дозирование по объему и каплями
- •Глава 10 средства механизации технологических процессов, лекарственных препаратов аптечного производства средства механизации для мытья, дезинфекции и стерилизации аптечной посуды
- •Средства механизации в технологии твердых лекарственных форм
- •Средства механизации в технологии жидких лекарственных форм
- •Средства механизации в технологии мягких лекарственных форм
- •Средства механизации в технологии инъекционных и асептических лекарственных форм
- •Средства механизации вспомогательных операций в технологии лекарственных форм
- •Технология лекарственных препаратов
- •Раздел 1 твердые лекарственные формы
- •Глава 11 порошки (pulveres) характеристика порошков
- •Классификация и способы прописывания порошков
- •Технологические стадии приготовления порошков
- •Потери твердых лекарственных веществ при растирании их в ступке № 1
- •Частная технология порошков
- •Оценка качества и совершенствование технологии порошков
- •Глава 12 сборы (species) характеристика и классификация сборов
- •Способы прописывания сборов
- •Приготовление сборов
- •Оценка качества, хранение и отпуск сборов
- •Раздел 2
- •Глава 13 общие вопросы технологии жидких лекарственных форм
- •Классификация жидких лекарственных форм
- •Технологические стадии приготовления жидких лекарственных форм
- •Оценка качества и оформление жидких лекарственных препаратов к отпуску
- •Глава 14 растворы (solutiones) общая характеристика растворов. Понятие о растворимости
- •Обозначение концентрации растворов и их прописывание
- •Водные растворы
- •Концентрированные растворы для бюреточной установки
- •Приготовление жидких лекарственных форм с использованием концентрированных растворов и сухих лекарственных веществ
- •Стандартные фармакопейные растворы
- •X Расчет: Раствора формальдегида 36,5—37,5 %
- •Неводные растворы
- •Совершенствование качества и технологии растворов
- •Глава 15 капли (guttae) характеристика капель
- •Капли для внутреннего применения (guttae pro usu interno)
- •Капли для наружного применения (guttae pro usu externo)
- •Оценка качества и совершенствование технологии капель
- •Глава 16 растворы высокомолекулярных соединений
- •Классификация высокомолекулярных соединений
- •Приготовление растворов неограниченно набухающих вмс
- •Приготовление растворов ограниченно набухающих вмс
- •Глава 17
- •Характеристика коллоидных растворов
- •Приготовление растворов защищенных коллоидов
- •Растворы полуколлоидов
- •Глава 18 суспензии (suspensiones) характеристика суспензий
- •Факторы, влияющие на устойчивость гетерогенных систем. Закон стокса
- •Способы приготовления суспензий
- •Оценка качества, хранение и совершенствование суспензий
- •Глава 19 эмульсии (emulsa) характеристика эмульсий
- •Теоретические основы образования эмульсий
- •Технология эмульсий
- •Оценка качества, хранение и совершенствование эмульсий
- •Глава 20 настои и отвары (infusa et decocta) характеристика настоев и отваров
- •Теоретические основы процесса экстракции лекарственного растительного сырья
- •Аппаратура, применяемая в технологии водных извлечений
- •Технология водных извлечений
- •Особые случаи приготовления водных извлечений. Авторские прописи
- •Технология водных извлечений с использованием экстрактов-концентратов
- •Оценка качества, хранение и совершенствование водных извлечений
- •Раздел 3 мягкие лекарственные формы
- •Глава 21 линименты (linimenta)
- •Характеристика и классификация линиментов
- •Общие правила приготовления линиментов
- •Частная технология линиментов
- •Контроль качества, хранение и совершенствование технологии линиментов
- •Глава 22 мази (unguenta) характеристика и назначение мазей
- •Классификация мазей
- •Основы для мазей, требования к ним и их классификация
- •Гидрогенизированного сульфожира 8,0
- •Прописывание мазей
- •Общие правила приготовления мазей
- •Частная технология мазей
- •Концентраты и полуфабрикаты для приготовления мазей
- •Подготовка вспомогательных веществ
- •Совершенствование технологии мазей
- •Глава 23 суппозитории (suppositoria) характеристика суппозиториев
- •Суппозиторные основы
- •Прописывание суппозиториев
- •Технология суппозиториев
- •Приготовление суппозиториев на гидрофобных основах.
- •Коэффициенты замещения жировых и желатино-глицериновой основ для некоторых лекарственных веществ
- •Количество лекарственных веществ и основы, необходимое для приготовления 30 суппозиториев методом выливания в формы емкостью 2 см3
- •Оценка качества и хранение суппозиториев
- •Совершенствование технологии суппозиториев
- •Глава 24 пилюли (pilulae) характеристика пилюль
- •Вспомогательные вещества
- •Общие правила приготовления пилюль
- •Прописывание пилюль
- •Частная технология пилюль
- •Контроль качества, хранение и отпуск пилюль
- •Раздел 4 стерильные и асептически приготовляемые лекарственные формы
- •Глава 25 лекарственные формы для инъекций характеристика лекарственных форм для инъекций
- •Растворители
- •Организация работы в асептических условиях
- •Перечень лекарственных веществ, к которым предъявляются дополнительные требования
- •Стерилизация
- •Характеристика термоиндикаторов
- •Технология растворов для инъекций и контроль их качества
- •Журнал регистрации отдельных стадий изготовления инъекционных растворов1
- •Стабилизация растворов для инъекций
- •Частная технология растворов для инъекций
- •Изотонические растворы
- •Плазмозаменяющие (физиологические) растворы
- •Растворы для инъекций на неводных растворителях
- •Хранение и отпуск инъекционных лекарственных форм
- •Совершенствование технологии инъекционных лекарственных форм
- •Глава 26
- •Глазные лекарственные формы
- •Характеристика глазных
- •Лекарственных форм
- •Глазные капли (guttae ophtalmicae)
- •Глазные мази (unguenta ophtalmica seu oculenta)
- •Контроль качества, хранение и отпуск глазных лекарственных форм
- •Совершенствование технологии глазных лекарственных форм
- •Глава 27 лекарственные формы с антибиотиками характеристика антибиотиков
- •Технология лекарственных форм с антибиотиками
- •Оценка качества, хранение и отпуск лекарственных форм с антибиотиками
- •Совершенствование технологии лекарственных форм с антибиотиками
- •Глава 28
- •Особенности применения и назначения лекарственных препаратов для детей
- •Особенности технологии, контроля, хранения и отпуска лекарственных препаратов для детей
- •Особенности применения некоторых препаратов при лечении детей и беременных женщин
- •Совершенствование лекарственных форм для детей
- •Раздел 5 затруднительные и несовместимые сочетания лекарственных средств
- •Глава 29
- •Затруднительные случаи приготовления лекарств
- •Характеристика кажущихся несовместимостей
- •Глава 30 несовместимые сочетания лекарственных средств
- •Классификация несовместимостей
- •Взаиморастворимость (смешиваемость) отдельных растворителей1
- •Влияние относительной влажности воздуха на отсыревание порошков
- •Перечень лекарственных веществ, которые в виде порошков отпускаются в вощеных капсулах
- •Химические несовместимости
- •Осаждение алкалоидов-оснований и синтетических азотистых оснований из водных растворов их солей
- •Совместимость солей алкалоидов и азотистых оснований с щелочными веществами в микстурах
- •Совместимость солей алкалоидов и азотистых оснований с бензоатами, салицилатами, бромидами и йодидами (а. А. Фелсберг, в. А. Шидловска)
- •Несовместимость витаминов с некоторыми лекарственными веществами
- •Фармакологические несовместимости
- •Раздел 6
- •Глава 31 гомеопатические лекарственные препараты определение и история развития гомеопатии
- •Принципы гомеопатии. Механизм действия гомеопатических лекарств
- •Технология гомеопатических лекарственных форм
- •Частная технология гомеопатических лекарственных форм
- •Гомеопатических препаратов
- •Совершенствование гомеопатических лекарственных препаратов
- •Глава 32 ветеринарные лекарственные препараты характеристика ветеринарных лекарственных форм
- •Технология ветеринарных лекарственных форм
- •Совершенствование ветеринарных лекарственных форм
- •Глава 33 косметические препараты
- •Классификация косметических препаратов
- •Жировые (неэмульсионные) кремы
- •Эмульсионные кремы
- •Густые эмульсионные кремы
- •Крем ланолиновый
- •Состав ланолиновых кремов на восковом мыле и на стеаратах калия и натрия, %
- •Жидкие эмульсионные кремы Кремы на аммиаке и буре (примерная рецептура)
- •Эмульсионные кремы типа м/в (жидкие)
- •Жидкие кремы на холестерине и триэтаноламиностеарате
- •Оценка качества и совершенствование косметических препаратов
- •Часть первая общие вопросы технологии лекарств
- •Часть вторая
- •Р а з д е л 1 твердые лекарственные формы
- •Р а з д е л 2 жидкие лекарственные формы
- •Р а з д е л 3 мягкие лекарственные формы
- •Лекарственные формы
- •Затруднительные и несовместимые сочетания лекарственных средств
- •Тихонов Олександр 1ванович ярних Тетяна Григор1вна
Характеристика термоиндикаторов
Индекс окраски |
Температура изменения цвета, °С |
Цвет до нагрева |
Цвет после нагрева |
ТП 111 |
111±2 |
Белый |
Бесцветный |
ТП 116 |
116±1 |
Светло-бирюзовый |
Темно-бирюзовый |
ТП 122 |
122±2 |
Светло-розовый |
Красный |
ТП 123 |
123±1 |
Светло-голубой |
Синий |
ТП 126 |
126±1 |
Светло-голубой |
Синий |
ТП 130 |
130±1 |
Светло-салатный |
Зеленый |
ТП 134 |
134±2 |
Светло-серый |
Сиреневый |
ТП 145 |
145±2 |
Светло-розовый |
Малиновый |
ТП 155 |
155±2 |
Абрикосовый |
Абрикосовый |
ТП 160 |
160±1 |
Светло-голубой |
Бирюзовый |
ТП 167 |
167±1 |
Светло-салатный |
Зеленый |
ТП 179 |
179±2 |
Светло-розовый |
Красный |
ТП 182 |
182±2 |
Светло-салатный |
Зеленый |
ТП 193 |
193±2 |
Бледно-абрикосовый |
Оранжевый |
ТП 212 |
212±1 |
Светло-желтый |
Желтый |
Стерилизация ультрафиолетовыми лучами. УФ-излучение — мощный стерилизующий фактор, способный убивать вегетативные и споровые формы микроорганизмов. В настоящее время УФ-лучи широко применяют в различных отраслях народного хозяйства для обеззараживания воздуха помещений, воды и др. Применение их в аптеках имеет большое практическое значение и существенные преимущества по сравнению с применением дезинфицирующих веществ, так как последние могут адсорбироваться медикаментами, которые в связи с этим приобретают посторонние запахи.
Ультрафиолетовая радиация — невидимая коротковолновая часть солнечных лучей с длиной волны меньше 300 нм. Предполагают, что УФ-радиация вызывает фотохимическое нарушение ферментных систем микробной клетки, действует на протоплазму клетки с образованием ядовитых органических перекисей и приводит к фото-димеризации тиаминов. Эффективность бактерицидного действия УФ-излучения зависит от ряда факторов: длины волны излучателя, дозы и времени облучения, вида инактивируемых микроорганизмов, запыленности и влажности среды. Наибольшей стерилизующей способностью обладают лучи с длиной волны 254—257 нм. В зависимости от времени воздействия различают стадии стимуляции, угнетения и гибели микробных клеток. Вегетативные клетки более чувствительны к УФ-излучению, чем споры. Для уничтожения спор требуется доза в среднем в 10 раз выше, чем для уничтожения вегетативных клеток. Запыленность и влажность среды значительно снижают эффективность стерилизации УФ-лучами.
В качестве источников УФ-излучения в практике аптек применяются специальные лампы БУВ (бактерицидная увиолевая). Лампа изготовляется в виде прямой трубки из специального увиолевого стекла, с электродами из двойной вольфрамовой спирали, покрытой углекислыми солями бария и стронция. В трубке находятся небольшое количество ртути и инертный газ аргон под давлением в несколько миллиметров ртутного столба. Источником УФ-излучения является разряд в парах ртути, происходящий между электродами при подаче на них напряжения. В состав увиолевого стекла входит до 72 % оксидов кремния, алюминия, бария. По сравнению с обычным стеклом оно содержит небольшое количество натрия оксида. Коэффициент пропускания УФ-лучей для увиолевого стекла 75 %. Указанные лампы обладают сильным бактерицидным свойством, так как максимум излучения близок к максимуму бактерицидного действия (254 нм). В то же время образование озона и оксидов азота незначительно, поскольку на долю волн, образующих эти продукты, приходится 0,5 %. Промышленностью выпускаются лампы БУВ-15,
БУВ-30, БУВ-60 и др. (табл. 33).
Таблица 33
Технические характеристики облучателей
|
|
Количество ламп |
|
Потребляе- | |
Облучатель |
Марка |
|
|
Тип ламп |
|
экранированных |
открытых |
мая мощность, Вт | |||
Бактерицидный на штативе |
ОБН-200 |
— |
2 |
БУВ-30 |
100 |
Бактерицидный передвижной |
ОБПЕ-450 |
— |
6 |
БУВ-30 |
450 |
Бактерицидный потолочный |
ОБП-300 |
2 |
2 |
БУВ-30 |
250 |
Бактерицидный потолочный |
ОБП-350 |
2 |
2 |
БУВ-15 БУВ-30П |
200 |
Бактерицидный настольный |
ОБН-150 |
1 |
1 |
БУВ-30 |
100 |
Бактерицидный настенный |
ОБН-200 |
2 |
1 |
БУВ-30П |
100 |
В настоящее время УФ-лампы широко применяются в аптеках для стерилизации воздуха, воды очищенной при подаче ее по трубопроводу, вспомогательных материалов и т. д. Для стерилизации воздуха целесообразно использовать настенные и потолочные бактерицидные облучатели, подвешивая их на высоте 1,8—2 м от пола и размещая по ходу конвекционных потоков воздуха равномерно по всему помещению. В отсутствии людей стерилизацию можно проводить неэкранированными лампами из расчета мощности 3 Вт на 1 м3 помещения. Время стерилизации 1—1/2 часа. Удобно пользоваться экранированными лампами, свет которых направлен вверх, таким образом УФ-лучи не оказывают действия на глаза и кожные покровы. Наличие экранированных ламп позволяет обеззараживать воздух в присутствии работающих. В этом случае число ламп определяется из расчета мощности 1 Вт на 1 м3 помещения.
Для стерилизации воздуха в аптеках предложены передвижные бактерицидные облучатели большой мощности, состоящие из 6 ламп БУВ-30 и обеспечивающие большую скорость стерилизации. Использование этого аппарата в помещении объемом до 100 м3 позволяет в течение 15 минут снизить обсемененность воздуха на 90—96 %. Другой тип бактерицидного облучателя оснащен лампой БУВ-30П и соответствующим отражателем, позволяющим направлять лучи. Он предназначен для стерилизации помещения объемом до 20 м3.
При стерилизации воздуха УФ-излучением необходимо соблюдать определенные правила, чтобы избежать нежелательного воздействия УФ-лучей на организм человека. При неумелом пользовании может произойти ожог конъюнктивы глаз и кожи, поэтому категорически запрещается смотреть на включенную лампу. При приготовлении лекарств в поле УФ-излучения надо защищать руки 2 %-ным раствором или 2 % мазью новокаина или парааминобензойной кислоты. Необходимо также систематически проветривать помещение для удаления образующихся окислов азота и озона.
Время облучения воздуха лампами БУВ может быть значительно уменьшено, если до санации добавить в воздух аэрозоль триэтилен-гликоля или других подобных ему веществ.
При стерилизации воздуха УФ-лучами необходимо учитывать возможность многочисленных фотохимических реакций лекарственных веществ при поглощении излучения. Поэтому все медикаменты, находящиеся в помещении для приготовления лекарств, требующих асептики, целесообразно хранить в таре, не пропускающей УФ-лучи (стекло, полистирол, окрашенный полиэтилен и др.).
Ультрафиолетовое излучение используется для стерилизации воды очищенной. Для этого применяются аппараты с погруженными и непогруженными источниками УФ-излучения. В аппаратах первого типа бактерицидная лампа, покрытая кожухом из кварцевого стекла, помещается внутри водопровода и омывается водой. В аппаратах с непогруженными лампами они помещаются над поверхностью облучаемой воды. В связи с тем, что обычное стекло практически непроницаемо для УФ-лучей, водопровод в местах облучения делается из кварцевого стекла.
Лампы УФ-излучения можно использовать для обеззараживания поступающих в аптеку рецептов, являющихся одним из основных источников микробного загрязнения воздуха и рук ассистента. Представляет интерес аппарат для обеззараживания рецептов, в основе которого лежит принцип облучения их шестью бактерицидными лампами БУВ-30 с двух сторон. Производительность аппарата до 180 рецептов в час.
Ультрафиолетовое излучение можно применять для стерилизации вспомогательных материалов и аптечного инвентаря.
Радиационная стерилизация — высокоэффективный и перспективный метод стерилизации, который в последние годы получает все более широкое распространение для стерилизации медицинской продукции. Изучается возможность радиационной стерилизации лекарственных средств (солевые инфузионные растворы, лечебные глазные пленки и др.). Бактерицидный эффект ионизирующего излучения проявляется в результате воздействия на метаболические процессы в клетке. Чувствительность микроорганизмов к ионизирующему излучению зависит от многих факторов: наличия влаги, кислорода, рН среды, температуры и др.
Для лучевой стерилизации используют гамма-излучение от изотопов 60Со и 137Со, а также быстрые электроны от линейных ускорителей, антимикробное действие которых одинаково. Стерилизационная доза составляет 2,5 мрад, но возможны и другие дозы в зависимости от конкретных условий на производстве.
Основные достоинства метода: высокая степень инактивации микроорганизмов, эффективность при низкой температуре, возможность автоматизации процесса, стерилизация изделий в упаковке.
В настоящее время имеется большой ассортимент изделий медицинского назначения, которые могут быть простерилизованы этим методом: гигроскопическая вата, перевязочный материал, изделия из пластмасс, части к различным аппаратам и приборам, биологические и бактериальные препараты, антибиотики.
Стерилизация токами высокой частоты. Токами высокой частоты называются токи, образующие электромагнитное поле, которое меняется с высокой частотой, вызывает изменение ориентации молекул и поглощение части энергии поля веществом. В результате происходит быстрый нагрев вещества и его стерилизация.
Механические методы стерилизации. Для растворов лекарственных веществ, чувствительных к тепловым и радиационным воздействиям, может быть использован метод стерилизации фильтрованием через мелкопористые фильтры. В отличие от других способов стерилизации, при которых микроорганизмы только теряют жизнеспособность, при стерилизующем фильтровании они полностью удаляются из раствора, тем самым обеспечивая его стерильность и апи-рогенность. Метод стерилизации фильтрованием — разновидность фильтрования растворов (микрофильтрация). При стерилизующем фильтровании более тонкая очистка достигается использованием соответствующих фильтрующих сред в виде глубинных и мембранных фильтров.
Глубинные фильтры характеризуются сорбционным и инерционным механизмами удержания частиц. Большая толщина этих фильтров приводит к тому, что они удерживают частицы меньшего размера, чем размер пор фильтра. Так, фильтры с максимальным диаметром пор 1,6 мкм при определенных условиях стерилизующие. В связи с этим в глубинных фильтрах за размер пор обычно принимают величину наименьших частиц, удерживаемых данным фильтром в количестве 100 %. Однако, обладая высокой способностью задерживать загрязнения из фильтруемых растворов, глубинные фильтры имеют и ряд недостатков. Размер пор этих фильтров значительно больше величины улавливаемых частиц, поэтому в процессе фильтрования должны строго соблюдаться все необходимые условия (рН среды, давление, температура и др.). При длительном фильтровании возможно прорастание микроорганизмов, задержанных матрицей, и попадание их в фильтрат. Помимо этого, большая часть глубинных фильтров состоит из волокнистых материалов, в связи с чем возникает угроза отрыва незакрепленных волокон и загрязнение фильтрата. Попадая в организм, эти волокна могут вызывать различные патологические реакции.
Получившие в последние годы большое распространение для стерилизующего фильтрования микропористые мембранные фильтры лишены этих недостатков. Мембранные фильтры представляют собой тонкие (100—150 мкм) пластины из полимерного материала, характеризующиеся ситовым механизмом задержания и постоянным размером пор. Принято считать, что средний размер пор фильтра, гарантирующего получение стерильного фильтрата, составляет 0,3 мкм. Во избежание быстрого засорения мембраны используют в сочетании с предфильтрами, имеющими более крупные поры. При стерилизации больших объемов растворов рационально применение фильтров обоих типов.
За рубежом для фармацевтических целей производится около десяти типов мембранных фильтров (Миллипор, Сарториус, Синпор, Дюрапор и др.). В Казани выпускаются мембранные фильтры «Вла-дипор» из ацетата целлюлозы типа МФА, из регенерированной целлюлозы типа МФЦ, которые могут быть использованы для очистки от механических примесей и микроорганизмов растворов лекарственных веществ, имеющих рН в пределах 1,0—10,0. Фильтры «Влади-пор» выпускаются 10 номеров в диапазоне размеров пор от 0,05 до 0,95 мкм и более.
Для стерилизации растворов лекарственных веществ предназначены фильтры МФА-3 и МФА-4 со средним размером пор соответственно 0,25—0,35 и 0,35—0,45 мкм. Выпускаются они в виде пластин и дисков разного диаметра. Фильтры типа МФА могут быть простерилизованы насыщенным водяным паром под давлением при температуре 120 °С, сухим горячим воздухом при 180 °С, обработкой формальдегидом, этиловым спиртом, водорода пероксидом, этилена оксидом, УФ- или гамма-лучами.
Перспективны также полимерные пленки с цилиндрическими порами — так называемые ядерные фильтры; фильтры «Мифил» из полиамидкапрона ПА-6 с диаметром пор 0,2 мкм.
Стерилизующее фильтрование осуществляют в установках, основными частями которых являются фильтр-держатель и фильтрующая среда. Используют два типа держателей — пластинчатые, в которых фильтр имеет форму круглой или прямоугольной пластины, и патроны, содержащие один трубчатый фильтр или больше. Перед фильтрованием производят стерилизацию фильтра в держателе и емкости для сбора фильтрата насыщенным водяным паром при 120 °С или горячим воздухом при 180 °С.
Метод мембранной (или стерильной) фильтрации целесообразно использовать для растворов термолабильных веществ, например, глазные капли «Пропомикс» (выпускаются МП «Апитек»). С этой целью успешно применяется установка фильтрационная (УФ), которая производится в г. Кириши. Производительность УФ при рабочем давлении 0,3 Мпа (3 кгс/см2) на мембране «Владипор» МФА-А № 2 с филь-
тродержателем ФД-142 — 0,08 м3/ч (80 л/ч) и ФД-293 — 0,2 м3/ч
(200 л/ч). Перед началом и в конце фильтрования раствора проводят испытание установки на герметичность и целостность мембранного фильтра.
Использование стерилизации фильтрованием имеет смысл только в том случае, если сам разлив раствора во флаконы осуществляется в строго асептических условиях с использованием оборудования с ламинарным потоком воздуха.
Контроль стерилизации этим методом проверяют прямым посевом проб фильтрата на питательные среды.
Химические методы стерилизации. Для изделий из резины, полимерных материалов, стекла, коррозиестойких металлов в настоящее время применяют химические методы стерилизации газами и растворами. Для газовой стерилизации используют этилена оксид чистый или с различными флегматизаторами (бромистый метил, углерода диоксид, фреоны и др.). Стерилизацию осуществляют в газовых стерилизаторах. Эффективность стерилизации этим методом зависит от дозы стерилизующего агента, температуры, относительной влажности воздуха.
Стерилизуемые объекты предварительно упаковывают в пакеты из полиэтиленовой пленки или пергаментную бумагу. Изделия, про-стерилизованные газовым методом, выдерживают в вентилируемом помещении в течение одних или нескольких суток в зависимости от вида изделий и их назначения.
Стерилизацию газами можно также применять и для стерилизации воздуха в боксах, вспомогательных материалов (особенно термолабильных), посуды, пробок; перевязочного материала, предметов ухода за больными и т. д. Газы легко проникают через упаковочные материалы (бумагу, целлофан, полиэтилен), а после стерилизации легко улетучиваются. Необходимо помнить об их ядовитости, раздражающем действии и при работе с ними соблюдать меры защиты (специальная одежда, маски и др.).
В зарубежных странах широкое применение для стерилизации воздуха находят аэрозольные препараты, представляющие собой жидкие физико-химические системы, приготовленные на сжиженных газах (фтортрихлорметан, трифтортрихлорэтан, углерода диоксид и др.). Аэрозоли могут находиться длительное время в воздухе, оказывая дезинфицирующее действие. Для стерилизации воздуха используют аэрозоли этиленгликоля и полиэтиленгликолей. Наиболее эффективным считают аэрозоль триэтиленгликоля, при распылении которого полная стерильность воздуха в помещении достигается за несколько минут.
Изучается также использование газовой стерилизации для лекарственных веществ и растворов (атропина сульфата, промедола, кордиамина, кофеин-бензоата натрия и др.). В этом случае необходимо прежде всего выяснить возможность взаимодействия газов с лекарственными веществами. В зарубежной литературе имеются сообщения о возможности стерилизации газами антибиотиков, панкреатина и некоторых других веществ.
Для стерилизации растворов можно применять Р-пропилолактон, который представляет собой жидкость, кипящую при 153 °С. Растворяясь в воде, он гидролизуется до Р-оксипропионовой кислоты. Р-пропилолактон применяют в концентрации 0,2 % по объему и инкубируют при 37 °С в течение 2 секунд.
Для химической стерилизации растворами используют 6 % -ный раствор водорода пероксида и надкислоты (дезоксон-1). Стерилизацию производят в закрытых емкостях из стекла, пластмассы или покрытых эмалью. Эффективность стерилизации этим методом зависит от концентрации стерилизующего агента, времени стерилизации и температуры стерилизующегося раствора. При химической стерилизации изделие полностью погружают в раствор, выдерживают в нем определенное время, а затем промывают стерильной водой в асептических условиях.
Одной из разновидностей химической стерилизации является консервирование лекарственных форм, то есть предохранение лекарственных препаратов от микробной порчи в процессе их использования путем добавления к ним различных химических веществ.
К консервантам предъявляется ряд требований: фармакологическая индифферентность в используемой концентрации (отсутствие общетоксического и местнораздражающего действия); широкий антимикробный спектр; отсутствие химического взаимодействия с лекарственными веществами и другими компонентами лекарственных препаратов; отсутствие влияния на органолептические свойства лекарств; устойчивость при хранении; поддержание стерильности лекарственных форм в течение всего времени их применения, то есть надежная антимикробная активность.
Консервирующие вещества применяются только в крайне необходимых случаях, когда нельзя писпользовать стерилизацию или другие приемы для сохранения стерильности из-за сложной физико-химической структуры лекарственных препаратов или из-за невозможности создания упаковок с одноразовыми дозами. Консерванты применяют также для сохранения стерильности при многократном использовании. Проблема консервирования лекарственных препаратов особенно важна для стерильных и асептически приготовляемых лекарственных форм. Поэтому характеристика консервантов представлена в данной главе (эти вещества могут также применяться в технологии водных извлечений, эмульсий, мазей, приготовленных на гидрофильных и эмульсионных основах, и др.). Консервирующие вещества прибавляются к растворам для инъекций, содержащих вещества, разлагающиеся при нагревании. Консерванты должны быть указаны в рецепте или в частных статьях. Их наименование и количество пишется в ППК.
Лекарственные средства для внутриполостных, внутрисердечных, внутриглазных и инъекций, имеющих доступ к спинномозговой жидкости, а также при разовой дозе, превышающей 15 мл, не должны содержать консервантов.
Необходимость консервирования лекарственных форм в настоящее время возрастает еще больше в связи с расширением ассортимента готовых лекарственных форм, требующих длительного хранения.
Ю. И. Зеликсоном предложено наиболее часто используемые консерванты классифицировать следующим образом:
неорганические соединения;
металлоорганические соединения;
органические соединения: спирты, кислоты, эфиры, соли четвертичных аммониевых соединений.
Неорганические соединения (препараты серебра, серебряная вода и др.) — это в основном соли тяжелых металлов, которые оказывают олигодинамическое действие, то есть вызывают гибель микроорганизмов при очень больших разведениях (1—10 мкг/л). Применяют главным образом для консервирования глазных капель. Серебряная вода используется для обеззараживания питьевой воды на судах и в других специальных условиях в США, Франции, Великобритании и других странах.
Металлоорганические соединения — органические соединения ртути, обладают большой антимикробной активностью и в малых дозах нетоксичны для человека. К таким веществам относятся: мертиолат (в концентрации 0,001— 0,02 %), метафен (1:2500), фенилртутные соли (0,001—0,002 %).
Мертиолат (Merthiolatum, Thoomersal) — натриевая соль этилсалици-лата. Порошок кремового цвета, устойчивый на воздухе, хорошо растворимый в воде, спирте. Мертиолат применяют для консервирования инъекционных растворов (0,001 %), глазных капель (0,005 %), мазей (0,02—0,1 %) и эмульсий.
Мет а фен (Metaphenum, Monosept) — порошок желтого цвета без вкуса и запаха, нерастворимый в воде, растворимый в щелочах. Применяется для консервирования глазных капель в концентрации 1:2500. Применение метафена и мертиолата в глазных каплях ограничивает то обстоятельство, что они устойчивы только в щелочной среде, в то время как большинство алкалоидов, применяемых в офтальмологии, наиболее стабильно при низком значении рН.
Фенилртутные соли. Фенилртути ацетат представляет собой белый кристаллический порошок, растворимый в 600 мл воды, спирте. Для консервирования лекарственных форм пригодны и другие фенилртутные соли: борат, бензоат, хлорид, глюконат и салицилат.
Из солей фенилртути наиболее широкое применение имеет фенилртути нитрат для консервирования инъекционных растворов в концентрации 0,001— 0,002 %, для глазных капель — 0,004 %, эмульсионных мазей — 0,007—0,01 % .
Эта группа соединений — надежные консерванты. Их действие на микроорганизмы основано на блокировании сульфгидрильных групп ферментов. Органические соединения ртути эффективны против патогенных микроорганизмов, обычно встречающихся в глазных растворах. Некоторые авторы считают нежелательным применение этих веществ в офтальмологии, так как, по их мнению, они вызывают аллергические реакции при продолжительном применении.
Органические соединения. Этиловый спирт используется для консервирования новогаленовых препаратов в концентрации до 20 %, а также в количестве 10—12 % от водной фазы для консервирования эмульсий.
Однако наибольшими антисептическими свойствами обладает 70 % этиловый спирт, поэтому, присутствуя в галеновых препаратах до 20 %, он оказывает слабый консервирующий эффект.
Фенилэтиловый спирт представляет собой жидкость с запахом розы. Растворяется в воде при встряхивании до 2 %, образует прозрачный раствор в 50 % спирте (1:1). Рекомендуется, главным образом, для консервирования глазных капель в концентрации 0,3 %. В качестве консерванта глазных капель он принят рядом стран (Англия, США и др.). Недостаток в том, что он неэффективен против многих граммположительных микроорганизмов.
Бензилов ый спирт — жидкость с приятным ароматным запахом и жгучим вкусом. Растворяется в воде (1:25), в 50 % спирте (1:1), смешивается с хлороформом. В концентрации 0,5 % применяется для консервирования 15 %-но-го инъекционного раствора нембутала и препаратов радиоактивных изотопов; в концентрации 0,9 % — для глазных капель со стероидными препаратами.
Хлорбутанолгидрат представляет собой бесцветные кристаллы с запахом камфоры, малорастворимые в воде (1:250), легкорастворимые в 90 % спирте, хлороформе, жирных и вазелиновом маслах, глицерине. Широко используется в разных странах, в том числе и у нас, для консервирования инъекционных растворов, глазных капель (0,5 %) и др., так как он обладает довольно широким спектром антимикробного действия и незначительной сенсибилизирующей способностью. Хлорбутанолгидрат совместим со многими лекарственными веществами, эффективен в растворах с кислым значением рН. Однако консервант полностью инактивируется в нейтральной и щелочной средах, несовместим с серебра нитратом, натрия сульфатиазолом и некоторыми другими веществами.
Фенолы. Раствор фенола (0,25; 0,3; 0,5 %) весьма эффективен для консервирования парентеральных растворов (инсулиновых препаратов, вакцин и сывороток). Как консервант фармацевтических препаратов фенол почти не применяется. Недостаток его в том, что он обладает высокой токсичностью и иногда вызывает боль и жжение при инъекциях, а также аллергические состояния. Плохая растворимость в воде не позволяет использовать его для консервирования водных растворов.
Хлоркрезол — бесцветные кристаллы с характерным запахом. Растворим в 250 г воды (лучше в горячей), этаноле, жирных маслах. Хлоркрезол в 10—13 раз активнее фенола в отношении бактерий и грибов, в то же время менее токсичен.
Применяется для консервирования глазных капель в концентрации 0,05 %, инъекционных растворов — 0,1 %, мазей — 0,1—0,2 %.
Бензойная кислота — белое кристаллическое вещество со слабым характерным запахом. 1,0 г кислоты растворим в 350 мл воды, 3 мл спирта, 8 мл хлороформа. Бензойная кислота — известный консервант. Наиболее часто она применяется в виде натриевой соли, хорошо растворимой в воде (1,0 г в 1 мл воды).
Бензойную кислоту и ее соли в количестве 0,1—0,2 % в большинстве стран мира используют в качестве пищевых консервантов, которые оказывают сильное действие на дрожжи, особенно в кислой среде. В качестве консервантов лекарственных препаратов бензойная кислота и ее натриевая соль используются для сахарного и лекарственных сиропов, эмульсий рыбьего жира и вазелинового масла, суспензий с антибиотиками и др. Эти консерванты вводятся в массу для желатиновых капсул. В основном они используются при приготовлении лекарственных форм для внутреннего применения.
Сорбиновая кислота представляет собой белый мелкокристаллический порошок со слабым раздражающим запахом и слабокислым вкусом, плохо растворим в воде (0,15 %), хорошо растворим в маслах (0,6—1 %) и спирте.
Впервые сорбиновая кислота получена в 1859 г. в результате щелочного гидролиза полисахаридов, выделенных из плодов рябины — Sorbus aucuparia L — отсюда и ее название. В плодах рябины кислота находится в форме b-лактона, названного парасорбиновой кислотой, содержание которого составляет приблизительно 1 %.
В настоящее время сорбиновую кислоту синтезируют чаще всего путем взаимодействия кротонового альдегида с малоновой кислотой в присутствии тугидина.
Сорбиновая кислота разрешена в ряде стран мира для консервирования пищевых продуктов. Она менее токсична, чем обычно применяемые кислоты-консерванты, и безвредна для человека даже в больших количествах. Способствует повышению иммунобиологической активности организма, обладает сильной фунгицидной активностью. Используется для консервирования растворов (0,1 %), сахарного и других сиропов (0,7 %) иногда в сочетании с натрия бензоатом. Разрешена к применению для консервирования гидрофильных и эмульсионных основ (0,2 %). В настоящее время, помимо сорбиновой кислоты, промышленностью выпускаются ее калиевая и кальциевая соли. Кальциевая соль (в отличие от калиевой) плохо растворима в воде.
Сложные эфиры параоксибензойной кислоты (парабены). В медицинской практике наибольшее применение получили метиловый (нипа-гин) и пропиловый (нипазол) эфиры, принятые в качестве консервантов многими зарубежными фармакопеями (США, Швеции, Великобритании, Германии и др.). Они обладают значительно меньшей токсичностью, чем многие другие консерванты. Это белые кристаллические вещества без запаха и вкуса. Парабены плохо растворимы в воде, растворимы в маслах и очень хорошо — в органических растворителях. Вследствие лучшей растворимости метиловый эфир (нипа-гин) чаще применяется в водных растворах, а бутиловый (бутабен) — в масляных.
Пропиловый эфир (нипазол) весьма ценен тем, что одинаково растворим в воде и маслах и имеет большую активность при меньшей токсичности по сравнению с другими эфирами.
Нипагин применяется для консервирования инъекционных растворов, сиропа сахарного (0,01 %). Чаще всего используют сочетание нипагина-нипазола (1:3) для консервирования глазных капель, мазей, эмульсий и др.
Однако парабены имеют существенные недостатки: небольшая растворимость в воде, инактивация большим количеством веществ (например, неионогенными поверхностно-активными веществами), слабое спороцидное действие. Парабены нередко оказывают раздражающее и аллергизирующее действие на кожу (особенно у людей, реагирующих на параароматические соединения).
Тем не менее, парабены благодаря целому ряду положительных свойств широко применяются в косметической, пищевой и фармацевтической промышленности нашей страны и за рубежом.
Соли четвертичных аммониевых соединений (ЧАС) — это синтетические вещества с высокой поверхностной активностью и бактерицидным действием. Из этой группы веществ за рубежом наиболее широко применяется бензалкония хлорид, который представляет смесь хлоридов алкилдиметил-бензиламмония. Бензалкония хлорид — кристаллическое вещество белого цвета, очень хорошо растворим в воде; водные растворы его бесцветны, устойчивы к изменениям температуры, рН среды.
В концентрации 1:10000 применяют в настоящее время почти во всех зарубежных странах преимущественно для консервирования глазных капель, капель для носа, где требуется отсутствие раздражающего действия и быстрый бактерицидный эффект. Этот консервант совместим со многими лекарственными веществами, за исключением серебра нитрата, сульфатиазола натрия, кислоты борной. Он обладает значительной бактериостатической и фунгистатичес-кой активностью. Из других производных четвертичных аммониевых соединений используют бензэтония хлорид в концентрации 1:4000 для консервирования глазных капель и в концентрации 1:10000 — 1:20000 для инъекционных растворов, а также цетилпиридиния хлорид для консервирования глазных капель
(1:5000).
Соединением этой группы, представляющим значительный интерес, является отечественный препарат — додецилдиметилбензиламмония хлорид (ДМДБАХ), который в отличие от зарубежного препарата представляет собой индивидуальное вещество с додециловым радикалом (С12Н25). По безвредности, антимикробной активности и стабильности ДМДБАХ значительно превосходит бензалко-ния хлорид. Это желтовато-белый порошок с ароматическим запахом, очень хорошо растворимый в воде, спирте, ацетоне; в концентрации 0,01 % разрешен для консервирования мазевых основ. При консервировании глазных капель ДМДБАХ выдерживает стерилизацию (100 и 120 °С) и сохраняет активность более полутора лет.
Таким образом, в качестве химических консервантов для лекарственных форм могут применяться разнообразные вещества. Однако универсального консерванта, который мог бы использоваться для любых фармацевтических продуктов, не существует. При решении вопроса о том, какой же консервант пригоден для данного лекарственного препарата, следует учитывать совместимость его с остальными компонентами, проверять его активность именно в этом лекарственном препарате, а также учитывать все остальные требования, которые предъявляются к консервирующим веществам.
Необходимо отметить, что растворы лекарственных веществ, которые обладают сильным бактерицидным действием, не нуждаются в стерилизации. К таким веществам относятся: гексаметилентетрамин, аминазин, дипразин, колларгол, протаргол, имизин, ртути дихлорид, калия перманганат (0,1 % и более) и др.