
- •Розділ іі. Кінематика
- •§ 1. Способи описання руху точки. Швидкість та прискорення точки
- •Вектор швидкості точки
- •Вектор прискорення точки
- •Контрольні запитання
- •Методика розв’язання задач
- •Задача к.1. Визначення кінематичних характеристик точки а) Натуральний спосіб задавання закону руху точки
- •Б) Координатний спосіб задавання закону руху точки
- •§ 2. Кінематика найпростіших рухів твердого тіла
- •Зв’язок кутових та лінійних кінематичних величин
- •Контрольні запитання
- •Методика розв’язання задач
- •Задача к.2. Найпростіші перетворення рухів тіл в механізмах
Методика розв’язання задач
А. Якщо рух точки заданий натуральним
способом: задана траєкторія, початок
відліку та закон руху,
а потрібно знайти кінематичні
характеристики руху точки, то проводимо
наступні дії:
1. Знаходимо положення точки у заданий момент часу і позначаємо його на траєкторії.
2. Взявши першу та другу похідні від закону руху, визначаємо швидкість та тангенціальне прискорення:
,
,
та обчислюємо їх значення у заданий момент часу.
3. Знаходимо нормальне прискорення
.
4. Визначаємо модуль повного прискорення.
.
Б. Якщо рух точки в площині заданий
параметрично,
,
а потрібно знайти кінематичні
характеристики точки, то проводимо
наступні дії:
1. Знаходимо рівняння траєкторії точки, виключаючи час з рівнянь руху, зображаємо траєкторію та знаходимо положення точки у заданий момент часу.
2. Визначаємо компоненти швидкості та її модуль
,
,
.
3. Обираємо зручний масштаб, креслимо траєкторію, помічаємо положення точки та будуємо відповідні вектори.
4. Визначаємо компоненти прискорення
,
,
та знаходимо модуль прискорення
,
та у зручному масштабі будуємо відповідні вектори
5. Знаходимо тангенціальне прискорення
.
6. Знаходимо модуль нормального прискорення
та будуємо відповідні вектори.
7. Визначаємо радіус кривизни траєкторії
.
В. Якщо потрібно встановити закон руху точкиза відомим виразом для прискорення, то треба двічі інтегрувати (1.14) та знайти сталі інтегрування з початкових умов. Детально ця задача розглядається у частині „Динаміка”.
Приклади розв’язання задач
Приклад А. Рух точки заданий натуральним
способом.Знайти положення точки,
її швидкість та прискорення в заданий
момент часу= 1 с, якщо точка рухається по колу радіуса
= 12 см, за законом
(см).Всі вектори зобразити на рисунку.
Розв’язання. Накреслимо коло
довільного радіуса та помітимо його
центр літерою.
Вкажемо початкове положення - точку
та додатний напрям руху (рис. 1.9).
Визначимо положення
точки на момент часу
= 1 с.Для цього підставимо цей час в
рівняння руху та отримаємо
= 18,8 см.
Знайдемо положення точки на траєкторії, скориставшись визначенням радіанної міри кута
= 90°,
що
вказує положення точки
на траєкторії (рис. 1.9)
Взявши першу похідну від закону руху за часом, знаходимо закон зміни швидкості точки
,
і на
момент часу
= 1 с отримаємо
3,14∙4 = 12,6 см/с.
Додатне значення швидкості визначає напрям руху точки в бік зростання дугової координати (в нашому випадку – проти руху стрілки годинника), що зображено на рис. 1.9.
Похідна за часом від модуля швидкості
дозволяє знайти тангенціальне прискорення
,
що на
момент часу
= 1 с дає
– 18,8 см/с2.
Різні знаки у швидкості та тангенціального прискорення вказують на те, що їх напрями протилежні, отож, точка рухається сповільнено.
Точка рухається по колу, тому радіус кривизни траєкторії є радіус кола. Величину нормального прискорення, яке спрямоване до центру кола, знаходимо за формулою
= 12,62/ 12 = 13,2 см/с2.
Повне прискорення
є векторною сумою взаємно перпендикулярних
складових
та
,
тому модуль повного прискорення знайдемо
скориставшись формулою Піфагора
= 22,9 см/с2.
Відповідь:= 18,8 см,
= 90°,
12,6 см/с,
18,8
см/с2,
13,2 см/с2,
22,9 см/с2.
Приклади Б.Рух точки заданий параметричним (координатним)способом.
Б.1) Рух точки задано в параметричному вигляді многочленами
, (1)
, (2)
де
- в сантиметрах,
- в секундах. Визначити рівняння траєкторії
руху точки і для моменту часу
= 1 c знайти: 1) положення точки на траєкторії,
2) її швидкість, 3) тангенціальне та
нормальне прискорення, 4) модуль повного
прискорення, 5) радіус кривизни траєкторії
в цьому положенні точки. Траєкторію та
всі вектори вказати на рисунку у зручному
масштабі.
Розв’язання. Щоб отримати
рівняння траєкторії, потрібно виключити
час з рівнянь руху точки в параметричному
виді. З рівняння (1) знаходимо
.
Підставляючи цей вираз в рівняння (2),
отримуємо рівняння траєкторії
.
Отже
траєкторія руху точки - парабола. Оскільки
≥ 0, то це буде лише її права гілка
параболи, яка починається у точці (0,
–1), що зображено на рис. 1.10.
Знайдемо положення рухомої точки
.
При
= 1 c з рівнянь (1) і (2) отримуємо:
2 см,
3 см.
Компоненти вектора швидкості знайдемо
згідно з (1.9) як перші похідні від
та
за часом:
2, (3)
.
(4)
Отже, компонент швидкості вздовж осі
хє сталою величиною= 2 см/с, а для знаходження другого
компонента
підставимо
= 1 с в вираз (4) і отримуємо
= 8 см/с.
Модуль швидкості знайдемо згідно (1.10)
=
= 8,25 см/с.
Після цього, будуємо траєкторію
,
та вказуємо положення точки в заданий
момент часу. Далі узручному для
наших даних масштабі(наприклад,
1 см = 1 см/с) будуємо вектори
компонент швидкостей
,
та їх векторну суму
(рис. 1.10).
Зверніть увагу на те, що вектор
лежить на дотичній до траєкторії.
Тепер визначимо компоненти прискорення
(у відповідності з (1.15), взявши похідні
від
та
за часом) і отримаємо:
, (5)
= 8,0 см/с2. (6)
Таким чином у даному прикладікомпонент прискорення вздовж осі
дорівнює нулю, а компонент прискорення
вздовж осі
сталий і додатний. Модуль повного
прискорення знайдемо за формулою (1.16)
= 8,0 см/с2.
Отож, в даному випадку
,
що ми і зображуємо в масштабі
1см = 2
см/с2в даному випадку(рис. 1.11).
Знаючи компоненти швидкості та прискорення, обчислимо тангенціальне та нормальне прискорення за формулами (1.23) та (1.24):
=
= 7,76 см/с2,
=1,95 см/с2.
Останній результат дозволяє визначити радіус кривизни траєкторії за формулою (1.25)
= 68/1,95 = 34,8 см.
Щоб зобразити тангенціальну та нормальну
складові прискорення як вектори,
спроектуємо вектор прискорення
на два взаємно перпендикулярні напрями:
один з яких спрямований вздовж напряму
швидкості (рис. 1.11), складова вздовж
нього визначить вектор
,
а другий – до центру кривизнитраєкторії
(в нашому випадку вліво, догори), складова
вздовж нього визначить вектор
.
Відповідь:
точка рухається по гілці параболи і в
момент часу= 1 c:
(2, 3),
=8,25 см/с,
8,0 см/с2,
= 7,76 см/с2,
= 1,95 см/с2,
=34,8 см.
Б.2) Рівняння руху точки задано у параметричному вигляді через тригонометричні функції однакового аргументу:
,
(1)
.
(2)
Для того, щоб визначити рівняння траєкторії потрібно виключити час з цих рівнянь. Оскільки аргументи тригонометричних функцій однакові, то послідовно виконаємо наступні операції. Перепишемо рівняння (1) та (2) у вигляді:
,(3)
.(4)
Піднесемо праву та ліву частину рівнянь (3) та (4) до другого ступеня, складемо праві та ліві частини і отримаємо
. (5)
Ми отримали рівняння еліпса з півосями 5 та 3 з центром у точці (2, -1).
Всі кінематичні характеристики знайдемо тим самим шляхом, яким користувалися у попередньому прикладі:
=6,33 см,
= 0,50 см,
,
.
Отже, для
= 1 c :
= 2,62 см/с,
= –2,72 см/с,
см/с.
Відповідні вектори зображені на рис. 1.12 в масштабі 1 см = 1 см/с.
Далі визначимо компоненти прискорення:
,
.
З останніх рівнянь знайдемо компоненти
прискорення та його модуль в завданий
момент часу
= 1 с:
= – 4,75 см/с2,
= – 1,65 см/с2,
= 5,03 см/с2.
Щоб зобразити складові прискорення
,
та повне прискорення
як вектори, оберемо зручний масштаб
(1 см = 1 см/с2в даному випадку).
зобразимо
та
з урахуванням їх напрямів та довжин
(рис. 1.13) та побудуємо їх векторну суму
.
Тангенціальне, нормальне прискорення
і радіус кривизни траєкторії руху точки
,
як і у попередньому прикладі, визначимо
за формулами (1.23) – (1.25):
= – 2,11 см/с2.
=4,56 см/с2,
14,28/4,56 = 3,13 см.
Щоб зобразити тангенціальну та нормальну
складові прискорення як вектори,
спроектуємо вектор прискорення
на два взаємно перпендикулярні напрями:
один з яких спрямований вздовж напряму
швидкості (рис. 1.12, 1.13), складова вздовж
нього визначить вектор
,
а другий – до центру кривизнитраєкторії
(в нашому випадку вниз ліворуч), складова
вздовж нього визначить вектор
.
Від’ємне значення
означає, що рух точки сповільнений, а
тому тангенціальне прискорення
напрямлене проти вектора швидкості
(порівняйте напрями зазначених векторів
на рис. 1.12 та 1.13).
Відповідь:траєкторія руху точки – еліпс, при
c:
(6,33;
0,5),
2,62 см/с,
–2,72
см/с,
3,78 см/с,
–2,11 см/с2,
4,56 см/с2,
5,03 см/с2,
3,13 см.
Б.3) Рух точки задано в параметричному вигляді рівняннями тригонометричними функціями кратних аргументів:
, (1)
,
(2)
де
- в сантиметрах,
- в секундах. Визначити рівняння траєкторії
руху точки і для моменту часу
= 1 c знайти: 1) положення точки на траєкторії,
2) її швидкість, 3) тангенціальне та
нормальне прискорення, 4) модуль повного
прискорення, 5) радіус кривизни траєкторії
в цьому положенні точки. Траєкторію та
всі вектори вказати на рисунку у зручному
масштабі.
Розв’язання. Щоб отримати
рівняння траєкторії, потрібно виключити
час з рівнянь руху точки в параметричному
виді. У нашому випадку аргументи
тригонометричних функцій кратні двом,
тому, за формулою,
перепишемо перше рівняння у вигляді
Скористаємося другим рівнянням і визначимо рівняння траєкторії
.
Отже траєкторія руху точки це частина
параболи яка обмежена по осі
в інтервалі [-4,4] та по осі
в інтервалі [-5,5]. Траєкторія зображена
на рис. 1.14.
Знайдемо положення
рухомої точки
.
При
= 1 c з рівнянь (1) і (2) отримуємо:
= 2 см,
=
2,5 см.
Компоненти
вектора швидкості знайдемо як перші
похідні від
та
за часом
, (3)
, (4)
при
=
1 с:
см/с,
см/с.
Модуль швидкості знайдемо за формулою
см/с;
Вектори швидкостей вказані на рис. 1.14 в масштабі 1 см = 1 см/с.
Тепер визначимо компоненти прискорення,
взявши похідні від
та
за часом і отримаємо:
,
,
при
=
1 с:
см/с2,
см/с2.
Модуль повного прискорення знайдемо за формулою
2,29 см/с2.
Щоб зобразити складові прискорення
,
та повне прискорення
як вектори, оберемо зручний масштаб
(1 см = 1 см/с2в даному випадку).
Зобразимо
та
з урахуванням їх напрямів та величин
(рис. 1.14) та побудуємо їх векторну суму
.
Знаючи компоненти швидкості та прискорення, обчислимо тангенціальне та нормальне прискорення за формулами:
=
1,49 см/с2,
см/с2.
Останній результат дозволяє визначити радіус кривизни траєкторії
см.
Щоб знайти тангенціальну та нормальну
складові прискорення як вектори, потрібно
спроектувати вектор прискорення
на два взаємно перпендикулярні напрями,
один з яких спрямований вздовж напряму
швидкості (рис. 1.14) складова вздовж нього
визначить вектор
,
а другий – до центру кривизнитраєкторії,
складова вздовж нього визначить вектор
.
Відповідь:точка рухається по
гілці параболи і при1
с:
(2 ; 2,5),
= 4,27 см/с,
2,29 см/с2,
= 1,49 см/с2,
= 1,74 см/с2,
= 10,48 см.