Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ШПОРЫ БХ 2 ИТОГОВАЯ.docx
Скачиваний:
959
Добавлен:
09.02.2016
Размер:
2.96 Mб
Скачать

1. Образование фосфоенолпирувата из пирувата - первая из необратимых стадий глюконеогенеза.

Схема всех реакций, протекающих на первой необратимой стадии глюконеогенеза, представлена на рисунке справа.

2. Гидролиз фруктозо-1,6-бисфосфата и глюкоза-6-фосфата.

Отщепление фосфатной группы из фруктозо-1,6-бисфосфата и глюкозо-6-фосфата - также необратимые реакции глюконеогенеза. В ходе гликолиза эти реакции катализируют специфические киназы с использованием энергии АТФ. В глюконеогенезе они протекают без участия АТФ и АДФ и ускоряются не киназами, а фосфатазами - ферментами, принадлежащими к классу гидролаз. В печени существуют 4 фермента, которые принимают участие только в глюконеогенезе и катализируют обходные реакции необратимых стадий гликолиза. Это - пируват-карбоксилаза, фосфоенолпируваткарбоксикиназа, фруктозе-1,6-бисфосфатаза и глюкозо-6-фосфатаза.

Энергетический баланс глюконеогенеза из пирувата

В ходе этого процесса расходуются 6 моль АТФ на синтез 1 моль глюкозы из 2 моль пирувата. Четыре моль АТФ расходуются на стадии синтеза фосфоенолпирувата из оксалоацетата и ещё 2 моль АТФ на стадиях образования 1,3-бисфосфоглицерата из 3-фосфоглицерата.

Суммарный результат глюконеогенеза: 2 Пируват + 4 АТФ + 2 ГТФ + 2 (NADH + Н+)+ 4 Н20 → Глюкоза + 4 АДФ + 2 ГДФ + 6 H3PO4 + 2 NAD+

Билет 24. Регуляция гликолиза и глюконеогенеза.

По сравнению с другими органами печень отличается наиболее сложным обменом глюкозы. Кроме пары противоположных процессов (синтеза и распада гликогена), в печени могут происходить ещё два противоположно направленных процесса - гликолиз и глюконеогенез. В большинстве других органов происходит только гликолиз. Переключение печени с гликолиза на глюконеогенез и обратно происходит с участием инсулина и глюкозагона и осуществляется с помощью: 1.) аллостерической регуляции активности ферментов; 2.) ковалентной модификации ферментов путём фосфорилирования/дефосфорилирования; 3.)индукции/репрессии синтеза ключевых ферментов.

Регуляторные воздействия направлены на ферменты, катализирующие необратимые стадии гликолиза и глюконеогенеза, сочетание которых называют "субстратными", или "холостыми" циклами. "Субстратные" циклы - парные комбинации процессов синтеза и распада метаболитов. Как уже упоминалось, сочетание процессов синтеза и распада гликогена или необратимых реакций гликолиза и соответствующих им необратимых реакций глюконеогенеза может составить подобный цикл. Название "субстратный цикл" означает объединение реакций синтеза и распада субстрата. Название "холостой" отражает результат работы подобного цикла, заключающийся в бесполезном расходовании АТФ. Направление реакции первого субстратного цикла регулируется главным образом концентрацией глюкозы. При пищеварении концентрация глюкозы в крови повышается (до 8-10 ммоль/л). Активность глюкокиназы в этих условиях максимальна. Вследствие этого ускоряется гликолитическая реакция образования глюкозо-6-фосфата. Направление реакций второго субстратного цикла зависит от активности фосфофруктокиназы и фосфатазы фруктозо-1,6-бисфосфата. Активность этих ферментов зависит от концентрации фруктозо-2,6-бисфосфата. Фруктозо-2,6-бисфосфат - метаболит, образующийся в незначительных количествах из фруктозо-6-фосфата и выполняющий только регуляторные функции. Образование фруктозо-2,6-бисфосфата путём фосфорилирования фруктозо-6-фосфата катализируетбифункциональный фермент (БИФ), который катализирует также и обратную реакцию. В регуляции третьего субстратного цикла основная роль принадлежит пируваткиназе, фосфорилированная форма которой неактивна, а дефосфорилированная – активна. Координация скорости реакции II и III субстратных циклов достигается с помощью фруктозо-1,6-бисфосфата - продукта II субстратного цикла (гликолитическое направление), который является аллостерическим активатором пируваткиназы.

название

ферменты

активатор

ингибитор

гликолиз

Гексокиназа

Фосфофруктокиназа

Пируваткиназа

Гл-6-фосф

Атф,цитрат

Атф,аланин

Амф, фр 2-6-бифосф

Фр 1-6 дифосф

глюконеогенз

Пируваткарбоксилаза

Фосфоенолпируваткарбоксилаза

Фруктозо 1-6 дифосфатаза

Адф

Адф

Амф, фр 2-6 бифосф

Ацитилкоа

Ацетилкоа

Цитрат, атф

Билет 25. Превращение ПВК. Цикл Кори. Спиртовое брожение.

При анаэробных условиях пировиноградная кислота превращается в молочную кислоту (лактат) или в этиловый спирт (этанол), или в пропионовую кислоту. Этот анаэробный процесс называют еще брожением. В данном случае речь идет о молочнокислом, спиртовом и пропионовом брожении (соответственно). Молочная кислота образуется из пирувата при метаболизме ряда микроорганизмов, а также в клетках мышц многоклеточных организмов. Суммарная реакция превращения глюкозы в лактат имеет следующий вид:

Цикл Кори — совокупность биохимических ферментативных процессов транспорта лактата из мышц в печень, и дальнейшего синтеза глюкозы из лактата, катализируемое ферментами глюконеогенеза.

Биологическое значение:

При интенсивной мышечной работе, а также в условиях отсутствия или недостаточного числа митохондрий (например, в эритроцитах илимышцах) глюкоза вступает на путь анаэробного гликолиза с образованием лактата. Лактат не может далее окисляться, он накапливается (при его накоплении в мышцах раздражаются чувствительные нервные окончания, что вызывает характерную ломоту в мышцах). С током крови лактат поступает в печень. Печень является основным местом скопления ферментов глюконеогенеза (синтез глюкозы из неуглеводных соеднений), и лактат идет на синтез глюкозы. Реакция превращения лактата в пируват катализируется лактатдегидрогеназой, далее пируват подвергается окислительному декарбоксилированию или может подвергаться брожению.