
- •Предисловие
- •Введение
- •Роберт Вильгельм Бунзен
- •Анри Луи Ле Шаталье
- •Вильгельм Фридрих Оствальд
- •Сванте Август Аррениус
- •Якоб Генрих Вант-Гофф
- •Иоханн Николаус Брёнстед и Михаил Ильич Усанович
- •Николай Николаевич Семенов
- •Химическая термодинамика учебно-целевые задачи – научить студентов:
- •Значимость темы
- •Основные понятия и определения химической термодинамики
- •Внутренняя энергия
- •Теплота и работа
- •Первый закон термодинамики
- •Применение I закона к простейшим процессам
- •Тепловые эффекты. Закон гесса
- •Теплоемкость
- •Второй закон термодинамики
- •Некоторые формулировки 2-го закона
- •Изменение энтропии при различных процессах
- •Пастулат планка
- •Термодинамические потенциалы
- •Соотношение между термодинамическими потенциалами
- •Закон действующих масс
- •Вопросы по теме: "термодинамика"
- •Примеры решения типовых задач
- •Пример решения контрольного задания по теме "Термодинамика"
- •Решение
- •Задачи для самостоятельной работы
- •Варианты заданий для домашней контрольной работы
- •Лабораторная работа №1.
- •Особые условия выполнения работы:
- •Устройство и настройка термометра Бекмана
- •Термодинамика фазовых превращений
- •Термодинамика фазовых равновесий
- •Основные понятия
- •Уравнение клайперона-клаузиуса
- •Диаграммы состояния однокомпонентных систем
- •Диаграмма состояния воды
- •Диаграмма состояния диоксида углерода
- •Бинарные системы Диаграммы плавкости
- •Взаимная растворимость жидкостей
- •Трехкомпонентные системы
- •Равновесие жидкость-жидкость в трехкомпонентных системах.
- •Распределение растворяемого вещества между двумя жидкими фазами. Экстракция.
- •Вопросы для подготовки к занятиям по теме: "термодинамика фазовых равновесий".
- •Примеры решения типовых задач.
- •Задачи для самостоятельной работы.
- •Лабораторная работа 1: построение диаграммы плавкости 2-х компонентной системы с простой эвтектикой.
- •Лабораторная работа № 2. Изучение взаимной растворимости фенола и воды.
- •Лабораторная работа № 3. Определение коэффициента распределения уксусной кислоты между водой и бензолом.
- •Свойства разбавленных растворов электролитов и неэлектролитов.
- •Повышение температуры кипения растворов.
- •Понижение температуру замерзания растворов.
- •Биологическое значение осмотического давления
- •Указания к выполнению работы.
- •Вопросы для самоконтроля по технике выполнения работы
- •Вопросы для самоконтроля при выполнении данного задания
- •Вопросы и задачи для самоконтроля усвоения темы
- •Вопросы для самоконтроля усвоения материала практической работы
- •Биологический статус изучаемой темы
- •Вопросы для подготовки:
- •Диссоциация воды
- •Водородный показатель
- •Механизм действия буферных систем
- •РН буферных систем
- •Влияние изменения объема буферных систем на рН.
- •Кислотно-щелочное равновесие крови
- •Роль внутренних органов в поддержании кислотно-щелочного резерва.
- •Изменение кислотно-щелочного равновесия при различных заболеваниях.
- •Задачи и задания для самостоятельной работы
- •Экспериментальная часть
- •Работа №3. Определение буферной ёмкости.
- •Электрохимия. Учебно-целевые задачи: Изучив этот раздел учебной программы, студент должен знать:
- •Значение электрохимических явлений для медицины.
- •Электродные процессы и электродвижущие силы.
- •Электрод и электродный потенциал.
- •Строение двойного электрического слоя на границе раствор-металл
- •Уравнение нернста
- •Гальванические элементы и их электродвижущие силы
- •Концентрационные гальванические элементы.
- •Диффузный потенциал.
- •Электроды первого рода.
- •Водородный электрод.
- •Ионоселективные электроды
- •Стеклянный электрод
- •Электроды второго рода.
- •Хлорсеребряный электрод Аg ׀ Ag Cl. KCl
- •Сопровождается реакцией растворения или осаждения соли АgСl:
- •Окислительно – восстановительные системы (ов) и ов –электроды.
- •Уравнение Петерса.
- •Классификация обратимых электродов.
- •Измерение эдс гальванических элементов.
- •Потенциометрия.
- •Прямые потенциометрические методы.
- •Приложение
- •Экспериментальная часть. Лабораторная работа №1. Измерение эдс гальванических элементов.
- •Порядок выполнения работы.
- •Изменение потенциалов отдельных электродов.
- •Потенциалов отдельных электродов.
- •Лабораторная работа № 3.
- •Лабораторная работа №4. Потенциометрическое измерение окислительно – восстановительных потенциалов. Редокс – системы.
- •Кинетика
- •Значение для медицины и фармации
- •Вопросы для подготовки к занятию
- •Введение
- •Понятие о скорости химического процесса
- •Основной закон химической кинетики
- •Кинетические уравнения реакций
- •Реакции первого порядка
- •Реакции второго порядка
- •Сложные реакции
- •Гетерогенные реакции
- •Температурная зависимость константы скорости реакции.
- •Методы расчета энергии активации и предэкспоненциального множителя а.
- •Основы молекулярной кинетики
- •Теория активных столкновений
- •Теория переходного состояния
- •Задачи и задания для самостоятельного решения.
- •Экспериментальная часть
- •Опыт № 1.Зависимость от концентрации.
- •Опыт №2. Зависимость от температуры
- •Учебно-методическое и информационное обеспечение дисциплины
- •По технике безопасности
- •И производственной санитарии при работе
- •В химических лабораториях
- •Медицинских учебных заведений
- •Содержание
Лабораторная работа № 2. Изучение взаимной растворимости фенола и воды.
ЦЕЛЬ РАБОТЫ:
Определить температуры осветления (гомогенизации системы) и помутнения (появления второй жидкой фазы) для ряда смесей фенол - вода.
Построить диаграмму взаимной растворимости в координатах температура-состав.
Определить критическую температуру растворения.
НЕОБХОДИМЫЕ РЕАКТИВЫ И ОБОРУДОВАНИЕ:
Фенол кристаллический, дистиллированная вода, аптечные весы, термометр на 100С,водяная баня (колба с водой), набор ампул, электрическая плитка.
ПОСЛЕДОВАТЕЛЬНОСТЬ ВЫПОЛНЕНИЯ РАБОТЫ:
Готовят смеси фенола с водой следующих составов:
Фенол (%вес) |
10 |
15 |
20 |
35 |
55 |
65 |
70 |
Вода (% вес) |
90 |
85 |
80 |
65 |
45 |
35 |
30 |
Общее количество каждой смеси 4 грамма. Навески фенола, взятые на аптечных весах, переносят в сухие пронумерованные ампулы, добавляют из бюретки воду и запаивают их или получают готовые у лаборанта.
Ампулы со смесями помешают поочередно в водяную баню с горячей (не доводить до кипения) водой, в которую опущен термометр на 100 С и медленно нагревают со скоростью 5-6 град/10 мин., чтобы температура жидкости в ампулах соответствовала температуре бани.
2. При постоянном легком встряхивании пробирки, не извлекая ее из бани, визуально определить температуру, когда смесь становится гомогенной, прозрачной.
Определив температуру осветления, воду в бане медленно охладить при помешивании. (Для перемешивания воды в бане можно использовать каучуковую трубку, через которую вдувают воздух). Отметить температуру, при которой жидкость в ампуле снова мутнеет в результате появления первых капель новом фазы. Разница между температурами осветления и помутнения не должна превышать 2-3°.
З. Опыт повторить 2-3 раза и рассчитать среднее значение, которое соответствует температуре взаимной растворимости обоих компонентов для данного состава. Результаты опыта занести в таблицу.
Номер ампулы |
Состав смеси масс,% |
Температура0, С | ||||
|
фенол |
вода |
осветленная |
помутневшая |
средняя | |
|
|
|
|
|
|
По полученным данным построить диаграмму растворимости на миллиметровой бумаге (1см - 10%, 1см - 5 ).По диаграмме определяют критическую температуру растворения системы фенол-вода.
Особые условия выполнения работы:
1.При работе с фенолом соблюдать осторожность, не допускать попадания его на кожу. При ожоге фенолом пораженное место промыть большим количеством воды и смазать вазелином.
2.Смеси с фенолом в раковины не выливать, сливать в специальные банки, стоящие в вытяжном шкафу.
Лабораторная работа № 3. Определение коэффициента распределения уксусной кислоты между водой и бензолом.
ЦЕЛЬ РАБОТЫ:
Научиться проводить процесс экстрагирования, рассчитывать коэффициент распределения, применять закон распределения для оценки состояния молекул третьего вещества в двух несмешивающихся растворителях.
НЕОБХОДИМЫЕ РЕАКТИВЫ И ОБОРУДОВАНИЕ:
Бензол, растворы уксусной кислоты, гидроксида натрия, фенолфталеина, три склянки с притертыми пробками, бюретка, колбы для титрования, пипетки.
ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ:
Готовят по 25 мл 2М,1М,0,5М растворов уксусной кислоты. В три склянки с притертыми пробками наливают по 20 мл приготовленных растворов кислоты (по 5 мл оставляют для определения исходной концентрации приготовленных растворов) и добавляют в каждую по 20 мл бензола. Склянки со смесями сильно встряхивают в течение 10-15 минут и оставляют отстаиваться на 30 минут.
Точную концентрацию исходных растворов кислоты определяют титрованием 0,1 М раствором NaOH с фенолфталеином. Для титрования берут по 1 мл раствора кислоты, добавляют по 2-3 капли фенолфталеина и проводят два параллельных определения.
После экстрагирования определяют концентрацию уксусной кислоты, оставшейся в водном слое. Для этого отбирают пипеткой по 1 мл из нижнего водного слоя и титруют 0,1М раствором NaOH. При взятии пробы нужно следить, чтобы в пипетку не попал раствор из верхнего бензольного слоя: для этого закрывают пальцем верхнее отверстие пипетки, а среднюю часть пипетки нагревают рукой, помещают пипетку в нижний слой и производят отбор раствора. Титрование каждого раствора также проводят не менее 2 раз и для расчета берут средние значения.
Данные записывают в таблицу.
Кол-во мл 0,1М NaOH пошедшие на титрование 1мл |
Кол-во уксусной кислоты перешедшей в бензол |
Равновесная концентрация кислоты моль/дмЗ | ||||
исх.р-ра V |
равновес. V |
V1 - V2 |
С (в воде) |
С (в бензоле) | ||
|
|
|
|
| ||
|
|
|
|
| ||
|
|
|
|
|
Пример расчета:
Пусть на титрование 1 мл исходного раствора кислоты пошло V1 мл 0,1М раствора NaOH, а 1 мл равновесного раствора - V2 мл. Так как объемы водного и бензольного слоев равны, то 1 мл бензольного раствора содержит количество кислоты, эквивалентное (V1-V2) мл щелочи.
Равновесная концентрация водного раствора уксусной кислоты будет равна: C1= V2*0,l/1 (моль/дмЗ),
Равновесная концентрация бензольного раствора кислоты:
С = (V1-V2)0,l/1 (моль/дмЗ).
Коэффициент распределения рассчитывают по формулам, учитывающим состояние молекул третьего компонента в двух жидких фазах:
а) К = С1/С2;
б) К = С1/ √ С2;
в) К=С12/С2.
Коэффициент распределения обычно записывается как отношение концентрации третьего компонента в том растворителе, в котором он более растворим, к его концентрации в растворителе, в котором он растворим менее.
а) распределяющееся вещество ни в одной из фаз не диссоциирует и не ассоциирует;
б) распределяющееся вещество в первой фазе не ассоциирует, во второй фазе ассоциирует, образуя двойные молекулы;
в) распределяющееся вещество диссоциирует в первой фазе на два иона, во второй фазе отсутствуют явления диссоциации и ассоциации;
• Особые условия выполнения работы:
1. Тщательно производить отбор пробы из системы бензол-вода после экстрагирования, чтобы бензол не попал в водный слой...
2. Смеси, содержащие бензол, сливать в специальные банки в вытяжном шкафу.