- •6. Четвертичная структура белков
- •1. Различия белков по форме молекул
- •2. Различия белков по молекулярной массе
- •5. Растворимость белков
- •9. Классификация белков
- •1. Простые белки
- •2. Сложные белки
- •1. Ферменты
- •2. Регуляторные белки
- •3. Рецепторные белки
- •4. Транспортные белки
- •5. Структурные белки
- •6. Защитные белки
- •7. Сократительные белки
- •1. Субстратная специфичность
- •2. Каталитическая специфичность
- •13. Кофакторы
- •1. Роль металлов в присоединении субстрата в активном центре фермента
- •2. Роль металлов в стабилизации третичной и четвертичной структуры фермента
- •3. Роль металлов в ферментативном катализе
- •Витамин рр (Никотиновая кислота)
- •14.Строение ферментов.
- •15.Ингибирование активности фермнтов.
- •1. Конкурентное ингибирование
- •16. Аллостерическая регуляция
- •17.Регуляция каталитической активности ферментов
- •18Кинетика ферментативных реакций.
- •19.Классификация и номенклатура ферментов
- •1. Оксидоредуктазы
- •5. Изомеразы
- •20.Эндерганические и экзерганические реакции в живой клетке.
- •21.Строение митохондрийи структурная организация дыхательной цепи.
- •22.Окислительное фосфорилирование
- •23.Биохимия питания.
- •24.Витамины.
- •25.Катаболизм основных пищевых веществ.
- •26.Окислительное декарбоксилирование пвк Окислительное декарбоксилирование пировиноградной кислоты
- •28Цикл лимонной кислоты.
- •27Цтк схема Регуляция цикла
- •29.Основные углеводы животных.
- •30.Аэробный гликолиз.
- •31.Биосинтез глюкозы.
- •32.Гликоген.
- •33.Анаэробный гликолиз.
- •34.Липиды
- •35.Переваривание липидов пищи.
- •36.Депонирование и мобилизация.
- •Депонирование жиров в жировой ткани
- •37.Распад жирных кислот в клетке.
- •38.Кетоновые тела
- •39.Биосинтез жирных кислот.
- •40Холестерол
- •41Липопротеины
- •42.Липидный состав.
- •43.Биологические мембраны.
- •44.Механизм переноса веществ через мембрвну
- •53.Декарбоксилирование аминокислот
- •54.Биосинтез гемма.
- •55.Распад гемма.
- •58.Происхождение атомов.
2. Роль металлов в стабилизации третичной и четвертичной структуры фермента
Ионы металлов обеспечивают сохранение вторичной, третичной, четвертичной структуры молекулы фермента. Такие ферменты в отсутствие ионов металлов способны к химическому катализу, однако они нестабильны. Их активность снижается и даже полностью исчезает при небольших изменениях рН, температуры и других незначительных изменениях внешнего окружения. Таким образом, ионы металлов выполняют функцию стабилизаторов оптимальной конформации белковой молекулы.
3. Роль металлов в ферментативном катализе
Не менее важную роль отводят ионам металлов в осуществлении ферментативного катализа.
Участие в электрофильном катализе
Наиболее часто эту функцию выполняют ионы металлов с переменной валентностью, имеющие свободную d-орбиталь и выступающие в качестве электрофилов. Это, в первую очередь, такие металлы, как Zn2+, Fe2+, Mn2+, Cu2+. Ионы щёлочно-земельных металлов, такие как Na+ и К+, не обладают этим свойством.
В ходе электрофильного катализа ионы металлов часто участвуют в стабилизации промежуточных соединений.
Участие в окислительно-восстановительных реакциях
Ионы металлов с переменной валентностью могут также участвовать в переносе электронов. Например, в цитохромах (гемсодержащих белках) ион железа способен присоединять и отдавать один электрон:
Благодаря этому свойству цитохромы участвуют в окислительно-восстановительных реакциях.
4. Роль металлов в регуляции активности ферментов
Иногда ионы металлов выступают в роли регуляторных молекул. Например, ионы Са2+ служат активаторами фермента протеинкиназы С,катализирующего реакции фосфорилирования белков.Ионы Са2+ также изменяют активность ряда кальций-кальмодулинзависимых ферментов. Витамин В2 (Рибофлавин)
Рибофлавин входит в состав флавиновых коферментов, в частности ФМН и ФАД1, являющихся в свою очередь простетическими группами ферментов-флавопротеинов. Различают два типа химических реакций, катализируемых этими ферментами. К первому относятся реакции, в которых фермент осуществляет прямое окисление с участием кислорода, т. е. дегидрирование (отщепление электронов и протонов) исходного субстрата или промежуточного метаболита. Вторая группа реакций, катализируемых флавопротеинами, характеризуется переносом электронов и протонов не от исходного субстрата, а от восстановленных пиридиновых коферментов. Ферменты этой группы играют главную роль в биологическом окислении
ФМН синтезируется в организме животных из свободного рибофлавина и АТФ при участии специфического фермента - рибофлавинкиназы:
![]()
Образование ФАД в тканях также протекает при участии специфического АТФ-зависимого фермента ФМН-аденилилтрансферазы. Исходным веществом для синтеза является ФМН:
![]()
Витамин рр (Никотиновая кислота)
Витамин РР входит в состав НАД и НАДФ, являющихся коферментами большого числа обратимо действующих в окислительно-восстановительных реакциях дегидрогеназ
Показано, что ряд дегидрогеназ используют только НАД или НАДФ, другие могут катализировать окислительно-восстановительные реакции в присутствии любого из них. В процессе биологического окисления НАД и НАДФ выполняют роль промежуточных переносчиков электронов и протонов между окисляемым субстратом и флавиновыми ферментами.
Витамин В6 (пиридоксин, антидерматитный)
Термином «Витамин В6» обозначает все три производных 3-оксипиридина, обладающие одинаковой витаминной активностью: пиридоксин (пиридоксол), пиридоксаль и пиридоксамин:
Оказалось, что хотя все три производных 3-оксипиридина наделены витаминными свойствами, коферментные функции выполняют только фосфорилированные производные пиридоксаля и пиридоксамина.
