Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Билоус_шпоры.doc
Скачиваний:
55
Добавлен:
12.12.2013
Размер:
701.44 Кб
Скачать

5 вопрос

Некоторые сведения о свойствах и характеристиках силовых полупроводниковых приборов.

Реализация всех устройств силовых преобразователей, которые рассматриваются и изучаются в данном курсе, осуществляется на базе силовых полупроводниковых приборов, которые получили в настоящее время широкое распространение. Такими приборами являются: силовые неуправляемые вентили, тиристоры и силовые транзисторы. Каждый из названных приборов имеет свои достоинства и недостатки и свою область применения. Но наиболее широкое применение получили силовые полупроводниковые управляемые вентили - тиристоры. Но рассмотрение свойств и характеристик полупроводниковых приборов начнем с силовых неуправляемых вентилей.

Неуправляемый полупроводниковый вентиль представляет собой нелинейное несимметричное активное сопротивление, величина которого зависит от величины и знака (полярности) приложенного к прибору напряжения. При одной полярности (прямой), когда к аноду подключен положительный полюс источника питания (+), а к катоду отрицательный, вентиль имеет малое сопротивление.

При противоположной полярности питающего напряжения сопротивление вентиля большое. Такая полярность напряжения называется обратной.

Вольт - амперная характеристика вентиля имеет прямую ветвь, расположенную в 1- ом квадранте координат “U - I” и обратную - в 3- ем квадранте. Масштабы при графическом изображении вольт - амперной характеристики принимают различные. Прямое напряжение (+U) измеряется единицами, или, даже, долями вольт, обратное напряжение (-U) - сотнями, или тысячами вольт. С другой стороны, прямые токи (+iв) могут составлять сотни ампер, обратные (-iв) - десятки миллиампер. На прямой ветви вольт - амперной характеристики можно выделить два участка: участок большого сопротивления (А) и участок малого сопротивления (Б). Участок Б близок к прямолинейному, поэтому часто пользуются приемом “спрямления” вольт - амперной характеристики вентиля, представляя его схему замещения при рассмотрении прямой ветви характеристики в виде последовательно включенных идеального вентиля, источника порогового напряжения (U0) и линейного сопротивления (Rд).

Рис 2 Рис 3

Обратная ветвь вольт - амперной характеристики может быть разбита на три участка: В - участок высокой проводимости (малого сопротивления)

Г - участок низкой проводимости

Д - участок высокой проводимости вследствие электрического пробоя.

Рис 4 Рис 5

Величины сопротивлений на прямой ветви вольт - амперной характеристики нельзя сопоставлять с величинами сопротивлений на обратной ветви.

Тиристор, как и диод, может пропускать большой ток только в одном (проводящем) направлении. Однако, он отличается от неуправляемого вентиля тем, что перевод его в открытое состояние может осуществляться только при выполнении двух условий:

  1. Полярность приложенного к тиристору напряжения - прямая;

  2. По цепи “управляющий электрод (УЭ) - катод” протекает управляющий ток iу (обычно в виде импульса) от отдельного источника управляющего напряжения. Перевод тиристора в закрытое состояние по цепи управления невозможен.

Для перевода тиристора в закрытое состояние необходимо снизить анодный ток до величины, меньшей некоторого минимального значения, называемого током удержания. Чаще всего это делается снижением iа до нуля при изменении полярности напряжения Uпит.

9 Вопрос Неуправляемый выпрямитель при мгновенной

коммутации.

3.2.1.1.Рабочий процесс

Рабочие процессы рассмотрим в трехфазной нулевой схеме при следующих допущениях:

а) Неуправляемые вентили идеальные. Это значит, что при протекании через них тока в проводящем направлении их сопротивление считается равным нулю и, значит, падение напряжения на них отсутствует. При приложении к ним обратного напряжения их сопротивление считается бесконечно большим, и, значит, обратный ток (iобр) считается равным нулю.

б) Питающий трансформатор- идеальный. (Активное сопротивление обмоток трансформатора равно нулю и, главное, индуктивность рассеяния первичных и вторичных обмоток трансформатора равна нулю.) Это значит, что токи в анодных цепях вентилей могут изменяться мгновенно, т.е. скачком.

в) Ток нагрузки идеально сглажен. Это могло бы иметь место при бесконечно большой индуктивности в цепи нагрузки. При этом, Пульсирующая ЭДС преобразователя не будет вызывать пульсаций тока нагрузки.

Анализ диаграммы показывает:

1.При увеличении угла α ЭДС преобразователя снижается.

2.ЭДС при угле α>30 содержит участки как + так и – занчений вольтсекундных плошадок.

3.Импульсы фазных токов тр-а сохраняя прямоугольную форму смешаются в сторону отставания на велечину α

Величина эдс неуправляемого выпрямителя.

Как было показано выше, мгновенные значения ЭДС неуправляемого выпрямителя изменяются по огибающей фазных ЭДС.

Для определения среднего значения ЭДС выпрямителя (Ed0) необходимо проинтегрировать функцию ed() на интервале повторяемости (()) и отнести результат к величине интервала. Выберем в качестве такого интервала 1  2 , на котором

ed = eа = eф.maxsin  (3-1)

где eф.max- амплитудное значение фазной ЭДС на вторичной стороне трансформатора.

- текущее значение электрического угла.

Ed0 – среднее значение ЭДС

Тогда получим:

((/2)+( /mn ))

Ed0 = 1/(2/mn)  eф.maxsin  d = (m/)*sin(/m)* eф.max =

((/2)-( /mn ))

= 2 E2(m/)*sin(/m). (3-2)

Здесь E2 - действующее значение вторичной ЭДС питающего трансформатора.

Пределы интегрирования выбираются из следующих соображений: отсчет текущего значения угла  осуществляется от точки пересечения синусоидой фазной ЭДС оси абсцисс при переходе этой ЭДС от отрицательной в положительную область, т.е. от точки “0”. Отложив угол (/2) ,как в нижнем, так и в верхнем пределе интегрирования, мы оказываемся в точке амплитудного значения фазной ЭДС eа. Нижний предел интегрирования- это точка естественной коммутации, совпадающая со значением угла 1. Для того, чтобы выйти в эту точку необходимо от точки амплитудного значения ЭДС “eа” “вернуться” назад на угол (/mn). Это значение “угла возврата” получается путем деления на два интервала повторяемости, т.е. угловой длительности работы соответствующей фазы. Указанный интервал повторяемости составляет угол = (2/mn).

Необходимо отметить, что полученная формула:

Ed0 = 2 E2(m/)*sin(/m) справедлива не только для трехфазного нулевого выпрямителя, пульсность которого (mn) равна трем, но и для любой другой пульсности. Величина пульсности связана с фазностью вентильных преобразователей формулой:

mn= m * kт

здесь: m- число фаз питающего трансформатора

kт - число тактов выпрямительной схемы. Во всех нулевых схемах kт = 1. В мостовых kт = 2.

Верхний предел интегрирования получается путем прибавления к текущему значению угла, соответствующего точке амплитудного значения фазной ЭДС угла (/mn).

12 вопрос

Коммутация токов в фазах питающего трансформатора ТП при переключении вентилей.

Ранее процесс перехода тока с одной фазы трансформатора на другую рассматривался, как мгновенный. Это было обусловлено принятыми допущениями. В реальных схемах из-за наличия в цепях переменного тока индуктивных сопротивлений, в частности, индуктивных сопротивлений обмоток трансформатора, процесс коммутации имеет определенную длительность. Индуктивные сопротивления обмоток трансформатора, обусловленные потоками рассеяния в магнитной системе, определяются из опыта короткого замыкания трансформатора, и в расчетах учитываются в виде общей индуктивности Ls, представляющей собой суммарную индуктивность рассеяния вторичной обмотки и, приведенную к ней, индуктивность первичной обмотки. Влияние на процесс коммутации активных сопротивлений обмоток трансформатора учитывать не будем из-за незначительности этого влияния.

По-прежнему выпрямленный ток считаем идеально сглаженным (Lн = ). На рис 16 представлена эквивалентная схема трехфазного нулевого выпрямителя и диаграммы напряжений и токов, поясняющие процесс коммутации токов.

Индуктивные сопротивления обмоток учтены введением в схему индуктивностей Ls . Предположим, что в проводящем состоянии находится вентиль VS1 . В момент 1 поступает включающий импульс на вентиль VS2 . Поскольку потенциал анода вентиля в этот момент положителен относительно катода, вентиль включается.

Начиная с момента 1 оба тиристора включены и две фазы (“а” и “b”) вторичной обмотки трансформатора оказываются замкнутыми через них накоротко. Под воздействием ЭДС обмоток этих фаз (eа и eb) в короткозамкнутой цепи (контура коммутации) появляется ток короткого замыкания ik , который является коммутирующим током.

Этот ток можно в любой момент интервала коммутации (2 - 1 ) определить по формуле:

ik = (U2m/2Xs)*{cos  - cos ( + )} (3-7)

где U2m -амплитудное значение линейного напряжения между фазами “a” и “b”.

Xs= LS (3-8)

 - угол управления.

Нужно отметить, что через вентиль VS1 фазы “а” ток ik протекает в непроводящем направлении. Такое возможно, т.к. вентиль VS1 смещен прямым током Id , протекавшем через него до начала коммутации. Ток ik направлен от фазы “b” с большим потенциалом к фазе “а” с меньшим потенциалом. Учитывая, что выпрямленный ток Id при Lн =  в интервале коммутации остается неизменным, можно, согласно первому закону Кирхгофа для точки 0 записать:

ia + ib + Id = 0 ;

или с учетом направления токов:

ia + ib = Id = const.

Последнее уравнение справедливо для любого момента интервала коммутации. Пока ток проводит только вентиль VS1 , получаем ia = Id и ib = 0. На интервале одновременной проводимости вентилей VS1 и VS2 (интервал коммутации тока с фазы “а” на фазу “b”):

ia = Id - ik и ib = ik. Когда коммутация закончится и ток будет проводить только вентиль VS2 , получим:

ib = Id ; ia = 0.

Из рис 16 видно, что в интервале от 1 до 2 ток ib плавно увеличивается, а ia уменьшается. Когда ток ib станет равным Id , а ток ia снизится до нуля, вентиль VS1 выключится и ток нагрузки будет продолжать протекать только через вентиль VS2 .

Длительность интервала коммутации характеризуется углом коммутации , который может быть определен из следующего уравнения (для трехфазной нулевой и трехфазной мостовой схем):

обозначив угол коммутации  при угле управления  = 0 через 0, можно записать:

Подставляя в исходное уравнение значение 0, получаем:

 = arccos {cos  + cos 0 - 1} -  .

Согласно последней формуле с ростом угла  (в пределах 0< <90) уменьшается угол коммутации  . Физическая сущность этого явления состоит в том, что с увеличением угла  (в указанных пределах) растет напряжение, под действием которого возрастает ток ik в контуре коммутации и, следовательно, до значения Id он нарастает быстрее.

При дальнейшем росте угла  (90180) угол коммутации увеличивается.

Процесс коммутации оказывает непосредственное влияние на выпрямленное напряжение Ud . Это связано с тем, что при изменении фазных токов в зоне коммутации в индуктивностях Ls обмоток трансформатора появляются ЭДС самоиндукции. В выходящей из работы фазе ЭДС самоиндукции складывается с ЭДС “ea”. Во вступающей в работу фазе ЭДС самоиндукции вычитается из “eb”. Таким образом, с учетом действия ЭДС самоиндукции мгновенное значение выпрямленного напряжения на интервале коммутации тока равно полусумме ЭДС коммутируемых фаз.

Ud = (Ua + Ub)/2 . (3-12)

где Ua и Ub - мгновенные значения фазных напряжений вторичной обмотки трансформатора.

Так как, в зоне коммутации мгновенное значение выпрямленного напряжения снижается, по сравнению с мгновенной коммутацией, до величины Ud , происходит уменьшение среднего значения выпрямленного напряжения. Его величина определяется выражением:

(3-14)

Из (3-7), (3-8), и (3-14) можно получить: (3-15)

Анализируя последнюю формулу, мы видим, что от двух первых множителей, стоящих в числителе, зависит ширина заштрихованной на диаграмме площадки. От значения третьего множителя (mn) зависит количество этих площадок, приходящихся на период переменного напряжения - (2).

В завершение рассмотрения процесса коммутации фазных токов обратим внимание на то, что коммутационное снижение средней величины выпрямленного напряжения не зависит от действующего значения переменного напряжения на вторичных обмотках питающего трансформатора, а, также, от величины угла управления “”. Оно зависит только от трех величин, входящих в формулу (3-15).