
- •Трехфазные цепи
- •Трехфазный генератор
- •Соединения в звезду и треугольник, фазные и линейные величины
- •Мощности в трехфазных цепях
- •Круговое вращающееся магнитное поле трехфазного тока
- •Проанализируем,чему будет равняться сумма при. Круговое вращающееся магнитное поле трехфазного тока
- •13 Понятие четырехполюсника, классификация.
- •. Четырехполюсники
- •Классификация четырехполюсников
- •3.2. Основные уравнения четырехполюсников
- •Режим обратного питания четырехполюсников
- •18 Определение а–параметров с помощью режимов короткого замыкания и холостого хода
- •Прямое питание
- •Обратное питание
- •19 Нагрузочный режим четырехполюсника как результат наложения режимов холостого хода и короткого замыкания
- •20 . Эквивалентные схемы замещения четырехполюсника
- •22 Симметричный четырехполюсник
- •23 Родственные четырехполюсники
- •24 Характеристические параметры четырехполюсника
- •26 Мера передачи
- •27 Уравнения четырехполюсника в гиперболических функциях
- •28 Режим согласованной нагрузки четырехполюсника
- •29 Передаточные функции четырехполюсника
- •30 Соединения четырехполюсников
- •Каскадное соединение
- •31 Последовательное соединение
- •32 Параллельное соединение
- •33 Общие вопросы теории переходных процессов
- •35 Определение корней характеристического уравнения
- •36 Определение постоянных интегрирования
- •Схемы замещения:
- •37 Определение порядка цепи n
- •38 Разряд заряженной ёмкости через сопротивление r
- •39 Энергетические процессы после коммутации.
- •40 Постоянная времени.
- •41 Подключение rc-цепи к источнику постоянного напряжения
- •42 Подключение индуктивности l к источнику постоянной эдс.
- •44 Подключение rc-цепи к источнику гармонического напряжения.
- •46 Общий случай расчета цепи первого порядка.
- •Заряд ёмкости через r (включение цепи rc к источнику пост. Напряжения)
- •Преобразование Лапласа.
- •Теоремы операторного метода
- •Но стержневые (ключевые) теоремы
- •Некоторые типовые преобразования Лапласа
- •Подключение rl цепи к источнику sin эдс
- •Эквивалентные операторные схемы
35 Определение корней характеристического уравнения
Если получено итоговое дифференциальное уравнение (4.2), то для составления характеристического уравнения в нем все производные от искомой величины заменяются корнем p в соответствующей степени, а сама искомая функция заменяется единицей:
. (4.6)
Однако процедура получения дифференциального уравнения (4.2) не всегда очевидна и всегда скучна и утомительна. Поэтому разработаны более ловкие и удобные методы составления характеристического уравнения.
Приведем некоторые из них без доказательства в виде практических рекомендаций.
Метод входного сопротивления (входной проводимости)
Составляем цепь, соответствующую свободному режиму (для этого удаляем все источники электрической энергии: источники ЭДС замыкаем накоротко, ветви с источниками тока размыкаем).
Размыкаем цепь в произвольном месте и относительно точек разрыва записываем входное комплексное сопротивление
, при этом комплекс емкостного сопротивления
, а индуктивного
.
В полученном выражении повсеместно величину
заменяем корнемpи приравниваем выражение к нулю.
Уравнение
является характеристическим уравнением.
Следует отметить, что для цепей,
содержащих большое количество параллельных
ветвей, удобно пользоваться методом
входной проводимости. Метод состоит
в том, что записывается эквивалентная
комплексная проводимость между двумя
произвольными узлами послекоммутационной
цепи с отключёнными источниками. Далее,
как и в предыдущем случае,jзаменяется нари решается уравнение.
36 Определение постоянных интегрирования
Постоянные интегрирования определяются из начальных условий, каковыми являются значения искомой функции и ее производных по (n– 1)-ую включительно в начальный момент времени 0+(«справа»). В переходных процессах задаются начальные условия «слева» в моментt = 0–, предшествующий коммутации (чаще всего они формулируются самой постановкой задачи и легко определяются из расчета докоммутационного режима). Нахождение начальных условий «справа» по известным значениям начальных условий «слева» – ключевой момент в расчете переходных процессов.
Опишем процедуру отыскания начальных условий в цепи n-го порядка
для послекоммутационной схемы (
) составляют систему уравнений для мгновенных значений токов и напряжений по законам Кирхгофа, дополняют эту систему компонентными уравнениями типа
для емкости;
рассматривают эту систему уравнений в момент t = 0+с учетом независимых начальных условий, которые по правилам коммутации берутся равными начальным условиям «слева», в результате определяются зависимые начальные условия, в том числе значения первых производных от индуктивных токов и емкостных напряжений;
для отыскания значений первых производных от зависимых электрических величин и вторых производных от независимых электрических величин необходимо систему уравнений из п. 1 продифференцировать и рассмотреть ее в момент t = 0+ с учетом информации, полученной в п. 2;
процедура дифференцирования продолжается до тех пор, пока не будет найдена (n– 1)-ая производная искомой функции в 0+.
Система уравнений для определения постоянных интегрирования имеет следующий вид:
(4.9)
Здесь для определенности полагаем все корни pk вещественными разными числами. Кроме того, следует учитывать, что при наличии в цепи только источников постоянных воздействий значение производных от принужденной составляющей переходного процесса равны нулю.
1)С помощью сист. Диф. Ур. В (0+) дополненную нач. усл. (П.1)
2) с помощью сх. Замещения в (0+)