
- •4.9 Приклади розв’язку задач………………………………………...55
- •6.9 Приклади розв’язку задач ……………………………………….84
- •6.10 Задачі для самостійного розв’язку …………………………….89
- •7 Електростатика ……………………………………………….89
- •8.1 Магнітне поле. Індукція магнітного поля. Закон Ампера …………..103
- •Кінематика. Динаміка
- •1.1 Кінематика
- •1.1.1 Основні поняття і задача кінематики
- •1.1.2 Класифікація механічних рухів
- •1.1.3 Способи задавання руху точки у просторі
- •1.1.4 Швидкість при криволінійному русі
- •1.1. 5 Прискорення при криволінійному русі. Дотична та нормальна складові прискорення
- •1.1.6 Рух тіла по колу. Кутова швидкість та кутове прискорення. Аналогія поступального та обертального рухів
- •1.2 Динаміка
- •1.2.1 Закони Ньютона. Маса. Сила
- •1.2.2 Другий закон Ньютона і дві задачі динаміки
- •1.3 Сили в механіці
- •1.3.1 Сили пружності. Закон Гука
- •1.3.2 Сили тертя. Сухе тертя. Сили тертя спокою, ковзання, кочення
- •1.3.3 Сили в неінерціальних системах відліку. Сили інерції
- •1.4 Приклади розв’язку задач
- •1.5 Задачі для самостійного розв’язку
- •Закони збереження імпульсу та енергії
- •2.1 Імпульс. Закон збереження імпульсу
- •2.2 Закон збереження механічної енергії
- •2.3 Застосування законів збереження імпульсу і енергії до центрального удару куль
- •2.4 Приклади розв’язку задач
- •Задачі для самостійного розв’язку
- •Динаміка обертального руху
- •Обертальний рух твердих тіл. Абсолютно тверде тіло. Момент сили. Пара сил
- •Основне рівняння динаміки обертального руху
- •3.3 Аналогія величин і рівнянь поступального і обертального руху. Кінетична енергія обертання тіла
- •3.4 Розрахунок моментів інерції деяких тіл. Теорема Штейнера
- •3.5 Приклади розв’язку задач
- •3.6 Задачі для самостійного розв’язку
- •Закон Дальтона. Рівняння стану для суміші газів
- •Основне рівняння молекулярно-кінетичної теорії. Середня квадратична швидкість молекул
- •Середня енергія поступального руху молекул.
- •Поняття про функцію розподілу. Функція розподілу Максвелла
- •Швидкості молекул. Правило статистичного усереднення
- •Барометрична формула. Больцманівський розподіл молекул у силовому полі
- •Ефективний діаметр молекул. Частота зіткнень та середня довжина вільного пробігу молекул
- •4.9 Приклади розв’язку задач
- •Задачі для самостійного розв’язку
- •Явища перенесення в газах. Теплоємність та робота газів
- •Внутрішнє тертя
- •Теплопровідність газів
- •Дифузія
- •Зв’язок між коефіцієнтами перенесення
- •Внутрішня енергія системи. Кількість теплоти. Перше начало термодинаміки
- •Степені вільності молекул. Розподіл енергії по степеням вільності. Внутрішня енергія ідеального газу
- •Робота газу при ізопроцесах
- •Молекулярно-кінетична теорія теплоємності газів
- •Адіабатний процес
- •Приклади розв’язку задач
- •Задачі для самостійного розв’язку
- •Теплові машини. Ентропія. Реальні гази. Фазові переходи. Явища в рідинах
- •Оборотні і необоротні процеси. Цикли
- •Принцип дії теплової і холодильної машин та їх коефіцієнт корисної дії (ккд). Холодильний коефіцієнт. Друге начало термодинаміки
- •Ідеальна теплова машина Карно та її ккд
- •Поняття про ентропію. Властивості ентропії
- •Зміна ентропії ідеального газу
- •Реальні гази. Рівняння Ван-дер-Ваальса. Внутрішня енергія реального газу
- •Рідини. Явища в рідинах
- •Фазові переходи. Діаграма стану речовини. Рівняння Клапейрона-Клаузіуса
- •6.9 Приклади розв’язку задач
- •6.10 Задачі для самостійного розв’язку
- •Електростатика
- •Поняття про заряд. Закон Кулона
- •Силові характеристики поля. Принцип суперпозиції
- •Приклади розрахунку поля деяких заряджених тіл. Теорема Остроградського–Гаусса
- •Потенціал, різниця потенціалів. Робота по переміщенню заряду в електричному полі.
- •Електроємність
- •Енергія та густина енергії електростатичного поля
- •Приклад и розв’язку задач
- •Задачі для самостійного розв’язку
- •Електромагнетизм
- •8.1 Магнітне поле. Індукція магнітного поля. Закон Ампера
- •Закон Біо-Савара-Лапласа. Принцип суперпозиції для магнітного поля
- •Застосування закону Біо-Савара-Лапласа та принципу суперпозиції для розрахунку магнітного поля на осі колового струму
- •Застосування закону Біо-Савара-Лапласа та принципу суперпозиції для розрахунку магнітного поля прямолінійного провідника зі струмом
- •Взаємодія паралельних прямолінійних провідників із струмом
- •Магнітне поле соленоїда
- •Дія магнітного поля на рухомий заряд (сила Лоренца). Рух заряду в магнітному полі
- •Циркуляція вектора напруженості магнітного поля. Закон повного струму. Магнітний потік
- •Механічна робота в магнітному полі
- •Явище електромагнітної індукції. Закони Фарадея і Ленца
- •Явище самоіндукції. Індуктивність. Індуктивність соленоїда та тороїда
- •Енергія та густина енергії магнітного поля
- •Приклади розв’язку задач
- •Задачі для самостійного розв’язку
6.10 Задачі для самостійного розв’язку
Волькенштейн В.С. Сборник задач по общему курсу физики. - М.: Наука, 1969.
Задачі №: 5.198; 5.194; 5.217; 5.224; 6.18; 8.1; 7.54; 7.41.
Гаркуша І.П. та ін. Загальний курс фізики. Збірник задач. К. ”Техніка”. 2003
Задачі №: 2.245; 2.234; 2.368; 2.262; 2.292; 2.356; 2.333; 2.327.
Електростатика
Поняття про заряд. Закон Кулона
Тілам, які взаємодіють між собою з силою, набагато більшою (приблизно в 1039 разів), ніж сила гравітаційної взаємодії, приписали властивість мати заряд. Всі заряди умовно поділені на позитивні і негативні у відповідності з двозначним характером їх взаємодії: однойменні заряди відштовхуються, різнойменні притягуються. Сучасній науці відомо, що носіями заряду являються електрони та іони. Елементарним (найменшим) зарядом є заряд електрона е = -1,6∙10-19 Кл. Кл – (кулон) це одиниця заряду в системі одиниць СІ. У всіх електричних явищах має місце закон збереження заряду: алгебраїчна сума зарядів замкнутої (ізольованої) системи не змінюється.
В
основі електростатики, тобто вчення
про взаємодію нерухомих зарядів, лежить
закон Кулона (1785 р.) для точкових зарядів:
(7.1)
Сила
з якою точковий зарядQ
діє на точковий заряд q
прямо пропорційна добуткові цих зарядів,
обернено пропорційна квадрату відстані
r між ними і направлена по лінії, що
з’єднує ці заряди (рис.7.1).
- відносна діелектрична проникність
середовища, яка показує у скільки
разів сила взаємодії у вакууміFo
більша, ніж сила взаємодії F
в даному середовищі. Для повітря і
вакууму
= 1, для газів
1.
По сучасним поглядам, взаємодія зарядів відбувається через – електричне поле. Кожний заряд утворює у навколишньому середовищі електричне поле, яке і діє на внесений у нього інший заряд.
Силові характеристики поля. Принцип суперпозиції
Силовою характеристикою електричного поля є напруженість
(7.2)
Ця векторна величина чисельно дорівнює силі, яка діє з боку поля на одиничний позитивний заряд. Для поля точкового заряду Q напруженість
(7.3)
Вектор
направлений
по радіальним лініям від зарядуQ,
якщо він позитивний, і до нього, якщо
він негативний (рис.7.2).
Якщо поле утворене декількома зарядами, то вектор напруженості результуючого поля знаходиться по принципу суперпозиції як векторна сума напруженостей, утворених в даній точці кожним зарядом (рис.7.3)
.
(7.4)
Силова
характеристика
(7.5)
яка не залежить від властивостей середовища, називається індукцією електростатичного поля.
Ступінь зарядженості тіл, які не можна вважати точковими, характеризуються такими величинами:
лінійна густина заряду – заряд одиниці довжини
(7.6)
поверхнева густина заряду – заряд одиниці площі
(7.7)
об’ємна густина заряду – заряд одиниці об’єму
(7.8)
Для полів, утворених неточковими зарядами, напруженість розраховується також за принципом суперпозиції, а формула (7.4) переходить у відповідний (криволінійний, поверхневий чи об’ємний) інтеграли
;
,
(7.9)
де
-
напруженість поля, створеного нескінченно
малим елементом тілаdl,
dS
чи
dV.