- •Міністерство освіти і науки, молоді та спорту україни
- •Laboratory Works of Computing and Programming
- •Contents
- •1.2 Base Concepts of Operating Systems
- •1.3 Linux (lubuntu) Operating System
- •1.4 Tasks for Independent Work
- •1.5 Test Questions
- •2 Laboratory work № 2 Word Processor libreoffice.Writer
- •2.1 What Word Processors Can Do
- •2.2 Tasks for Independent Work
- •2.3 Test Questions
- •3 Laboratory work № 3
- •Introduction to the calc spreadsheet
- •3.1 The Basic Opportunities of Spreadsheets
- •3.1.1 Calc’s Environment
- •3.1.2 Calculations in Calc. Creating and Coping Formulas
- •3.2 The Calc charting capability
- •3.3 Tasks for Independent Work
- •4.2 Main Rules of Works in Scilab System
- •Variables
- •Input of vectors (arrays)
- •Input of matrixes
- •Some operations with matrixes with use of the operator ":"
- •Input from keyboard
- •Operators. Expressions use familiar arithmetic operators and precedence rules.
- •Intrinsic scilab Functions
- •Examples of Expressions
- •4.3 Individual Tasks for Laboratory Work
- •4.4 The Tasks for Self-Examination
- •4.5 Test Questions
- •5 Laboratory work № 5
- •5.3.1The plot function
- •5.3.3 Preparing Graphs for Presentation
- •Interactive Plot Editing
- •5.3.4 3D Plotting
- •5.4 Individual Tasks
- •5.6 Test Questions
- •6 Laboratory work № 6 programming in Scilab
- •6.1 Programming in scilab
- •What Happens When You Call a Function
- •Clearing Functions from Memory
- •6.2 Tasks for laboratory work
- •6.3 Example of performance of the laboratory work
- •6.4 Test Questions
- •7 ReferencEs
5.4 Individual Tasks
For construction of plots use functions of Scilab - plot() and fplot().
Create plots of the functions y(x) and g(x):
in the same graphic window;
in different graphic windows;
in two different subregions of the figure window.
In second column of the table 5.2 it are given two parameter functions f(t) and z(t ). Create plot related z of f .
Create 3D plot for function of two arguments in second column.
Use two ways to edit the graphs you create: 1) Interactive Plot Editing, 2) SCILAB commands.
Table 5.2 – Individual tasks
|
№ |
for x € [-2,2] |
for t € [0,2π] |
|
1 |
|
f=2sin(t) cos(t), z=3cos2(2t) sin(t)
|
|
2 |
|
f=2sin(pt)-3cos(pt), z=cos2(2pt) sin(pt)
|
|
3 |
|
f=5sin(pt)-cos(3pt), z=cos(2pt)-2sin3(pt)
|
|
4 |
|
f=3sin(2px)cos(pt)- cos2(3pt), z=2cos2(2pt)-3sin(3pt)
|
|
5 |
|
f=2sin(pt)cos(pt), z=cos2(pt)sin(3pt)
|
|
6 |
|
f=3sin(3pt)cos(2pt), z=cos3(4pt)sin(pt)
|
|
7 |
|
f=2sin(2pt)cos(4pt), z=cos2(3pt)-cos(px)sin(pt)
|
|
8 |
|
f=sin(3pt)+2sin(2pt)cos(3pt), z=cos(pt)cos(3pt)sin2(pt)
|
|
9 |
|
f=2sin(2pt)cos(4pt), z=cos2(3pt)-cos(pt)sin(pt)
|
|
10 |
|
f=sin(pt)cos(3pt)+ +2sin(3pt)cos(2pt), z=cos2(pt)-cos(3pt)
|
|
11 |
|
f=2sin(pt)cos(pt), z=cos2(pt)sin(3pt)
|
|
12 |
|
f=3sin(3pt)cos(2pt), z=cos3(4pt)sin(pt)
|
|
13 |
|
f=2sin(t) cos(t), z=3cos2(2t) sin(t)
|
|
14 |
|
f=2sin(pt)-3cos(pt), z=cos2(2pt) sin(pt)
|
|
15 |
|
f=5sin(pt)-cos(3pt), z=cos(2pt)-2sin3(pt)
|
|
16 |
|
f=3sin(2pt)cos(pt)- cos2(3pt), z=2cos2(2px)-3sin(3px)
|
|
17 |
|
f=2sin(px)cos(pt), z=cos2(px)sin(3p)
|
|
18 |
|
f=3sin(3pt)cos(2pt), z=cos3(4px)sin(pt)
|
|
19 |
|
f=2sin(2pt)cos(4pt), z=cos2(3pt)-cos(pt)sin(pt)
|
|
20 |
|
f=sin(3pt)+2sin(2pt)cos(3pt), z=cos(pt)-cos(3pt)sin2(pt)
|
|
21 |
|
f=2sin(2pt)cos(4pt), z=cos2(3px)-cos(px)sin(px)
|
|
22 |
|
f=sin(pt)cos(3pt)+ +2sin(3pt)cos(2pt), z=cos2(pt)-cos(3pt)
|
|
23 |
|
f=2sin(pt)cos(pt), z=cos2(pt)sin(3pt)
|
|
24 |
|
f=3sin(3pt)cos(2pt), z=cos3(4pt)sin(pt)
|
|
25 |
|
f=2sin(t) cos(t), z=3cos2(t) sin(t)
|
|
26 |
|
f=2sin(pt)-3cos(pt), z=cos2(2pt) sin(pt)
|





























