- •6.050502 «Инженерная механика»
- •Введение
- •Лекция №1 производство черных металлов
- •Лекция 2 механические свойтсва металлов и сплавов и методы их определения.
- •Статические испытания
- •Испытания на растяжение
- •Испытания на сжатие
- •Испытания на сжатие
- •Испытание на изгиб
- •Испытания на кручение
- •Испытания на кручение
- •Твердость
- •Другие методы определения твердости
- •Динамические испытания на изгиб образцов с надрезом
- •Усталость и изнашивание
- •Лекция № 3 атомно – кристаллическое строение металлов и сплавов. Реальное строение кристаллов
- •Реальное строение металлических кристаллов
- •Лекция 4 процесс кристаллизации металлов исплавов
- •Лекция № 4 строение сплавов. Диаграммы состояния двойных сплавов.
- •Лекция №5 диаграмма состояния железо - углерод
- •Диаграмма состояния железоуглеродистых сплавов.
- •Лекция 6 формирование структур чугунов. Виды чугунов
- •Практическое применение диаграммы Fe—Fe3c.
- •Лекция 7 общие положения термической обработки
- •Лекция 8 практика термической обработки углеродистой стали
- •Влияние углерода на твердость термически обработанных сталей
- •Определение прокаливаемости стали
- •Лекция 9 химико – термическая обработка: цементация стали
- •Лекция 10 Маркировка и применение легированных сталей Введение
- •Классификация легированных сталей
- •II. Классификация по содержанию углерода:
- •III. Классификация по содержанию легирующих элементов:
- •Маркировка легированных сталей
- •Применение легированных сталей
- •Лекция 11 Маркировка Цветных металлов и сплавов Введение
- •Медь и ее свойства
- •Сплавы на основе меди
- •Алюминий и его сплавы
- •Подшипниковые сплавы
- •Лекция 12 композиционные материалы
- •Классификация композиционных материалов и перспективы развития
- •Металлические композиционные материалы
Реальное строение металлических кристаллов
Обычно кусок металла состоит из скопления большого числа маленьких кристаллов неправильной формы, называемых зернами. Кристаллические решетки в отдельных зернах ориентированы относительно друг друга случайным образом (в некоторых случаях, например, при холодной прокатке, наблюдается преимущественная ориентировка зерен — текстура. Поверхности раздела зерен называются границами зерен. Такой кусок металла является поликристаллом. При определенных условиях, обычно при очень медленном контролируемом отводе тепла при кристаллизации (затвердевании металла), может быть получен кусок металла, представляющий собой один кристалл, его называют монокристаллом. В настоящее время в лабораториях выращивают монокристаллы массой в несколько сот грамм и более.
Встречающиеся в природе кристаллы, как монокристаллы, так и зерна в поликристаллах, никогда не обладают такой строгой периодичностью в расположении атомов, о которой говорилось выше, т. е. не являются «идеальными» кристаллами. В действительности «реальные» кристаллы содержат те или иные несовершенства (дефекты) кристаллического строения.
Дефекты в кристаллах принято классифицировать по характеру их измерения в пространстве на точечные (нульмерные), линейные (одномерные), поверхностные (двухмерные), объемные (трехмерные). Точечными дефектами называются такие нарушения периодичности кристаллической решетки, размеры которых во всех измерениях сопоставимы с размерами атома. К точечным дефектам относят вакансии (узлы в кристаллической решетке, свободные от атомов), межузельные атомы (атомы, находящиеся вне узлов кристаллической решетки), а также примесные атомы, которые могут или замещать атомы основного металла (примеси замещения), или внедряться в наиболее свободные места решетки (поры или междоузлия) аналогично межузельным атомам (примеси, внедрения) (рисунок 4).
Рисунок 4 – Точечные дефекты: 1 – примесный атом замещения;
2 – вакансия по Шоттки;
3 – примесный атом внедрения;
4 – дивакансия;
5 – вакансия по Френкелю;
6 – примесный атом замещения
При переходе атома из равновесного положения (узла) в междоузлие возникает пара вакансия — межузельный атом, которая называется дефектом Френкеля, а если атом из своего узла выходит на поверхность кристалла, то образующийся дефект называется дефектом Шоттки, Точечные дефекты являются центрами локальных искажений в кристаллической решетке. Однако заметные смещения атомов, окружающих вакансию или межузельный атом создаются только на расстоянии нескольких атмоных диаметров от центра дефекта и быстро убывают по мере удаления от дефекта.
Точечные дефекты, хотя и требуют определенной затраты энергии для образования, являются термодинамически равновесными, т. е. всегда присутствуют в кристалле. Это связано с тем, что точечные дефекты повышают энтропию системы.
Линейные дефекты в кристаллах характеризуются тем, что их поперечные размеры не превышают нескольких межатомных расстояний, а длина может достигать размера кристалла. К линейным дефектам относятся дислокации — линии, вдоль и вблизи которых нарушено правильное периодическое расположение атомных плоскостей кристалла. Различают краевую и винтовую дислокации (рисунок 5). Краевая дислокация представляет собой границу неполной атомной плоскости (экстраплоскости). Винтовую дислокацию можно определить как сдвиг одной части кристалла относительно другой.
Рисунок 5 – Схема краевой (линейной дислокации)
Дислокации не могут обрываться внутри кристалла — они должны быть либо замкнутыми, либо выходить на поверхность кристалла. Дислокации создают в кристалле вокруг себя поля упругих напряжений, убывающих обратно пропорционально расстоянию от них. Наличие упругих напряжений вокруг дислокаций приводит к их взаимодействию, которое зависит от типа дислокаций. Под действием внешних напряжений дислокации двигаются (скользят), что определяет дислокационный механизм пластической деформации. Перемещение дислокации в плоскости скольжения сопровождается разрывом и образованием вновь межатомных связей только у линии дислокации, поэтому пластическая деформация может протекать при малых внешних напряжениях, гораздо меньших тех, которые необходимы для пластической деформации идеального кристалла путем разрыва всех межатомных связей в плоскости скольжения. Обычно дислокации возникают при образовании кристалла из расплава.
Под поверхностными (двумерными) дефектами понимают такие нарушения в кристаллической решетке, которые обладают большой протяженностью в двух измерениях и протяженностью лишь в нескольких межатомных расстояниях в третьем измерении. К ним относятся дефекты упаковки, двойниковые границы, границы зерен и внешние поверхности кристалла. Под дефектами упаковки подразумевают локальные изменения расположения плотноупакованных плоскостей в кристалле.
Полиморфизм (аллотропия)
Как видно из первого раздела лекции некоторые металлы могут иметь несколько видов кристаллических решеток (железо, кобальт, олово, титан) Такое явление называется полиморфизмом или аллотропией.
Более точно можно сказать, что полиморфизм это способность металла менять тип кристаллической решетки при изменении температуры или давления.
Полиморфизм дает возможность кардинально изменять свойства металла при изменении внешних факторов, что позволяет в частности проводить для этих металлов термическую обработку. Аллотропические формы металлов приведены в таблице 1.
Таблица 1 – Аллотропические формы металлов
Металл |
Тип решетки |
Температурный интервал |
Аллотропическая форма |
Fe |
ОЦК ГЦК ОЦК |
Менее 911°С 911 – 1392°С 1392 - 1539°С |
α γ δ |
Co |
ГПУ ГЦК |
Менее 477°С 477 - 1490°С |
α β |
Sn |
Алмазная Тетрагональная |
Менее 13°С 13 - 232°С |
α β |
Ti |
ГПУ ОЦК |
Менее 882°С 882 - 1668°С |
α β |