
- •Министерство образования и науки Украины
- •Конспект
- •Механика газов Лекция 1: Общие сведения о свойствах и движении газов
- •1.Газы сжимаемые и несжимаемые
- •2.Газы реальные и идеальные
- •Лекция 2: Ламинарное и турбулентное движение газов. Давление газов и его разновидности
- •1. Ламинарное и турбулентное движение газов
- •2. Давление газов и его разновидности
- •Лекция 3: Статика газов
- •1. Уравнение Эйлера
- •2. Распределение избыточного давления на стенки сосуда заполненного горячим газом
- •Лекция 4: Динамика газов. Основные уравнения движения газов
- •1. Понятие о линии тока и трубке тока
- •2. Уравнение сплошности (неразрывности) движения газов
- •3. Уравнение импульсов Эйлера
- •4. Уравнение Бернулли для трубки тока идеального газа
- •5. Вывод уравнения Бернулли в избыточных давлениях
- •Лекция 5: Применение уравнения Бернулли в расчетах
- •1. Потери давления на предоление местных сопротивленй и на трение.
- •2.Истечение газов через отверстия с острыми кромками
- •3. Истечение газов через насадки
- •4. Расчет высоты дымовой трубы
- •Лекция 6: Сверхзвуковое движение газов
- •1. Общие сведения
- •2. Движение газа по трубе переменного сечения
- •3. Истечение газов через простое сопло
- •4. Сопло Лаваля. Конструкция и режимы его работы
- •Лекция 7: Движение газов в рабочем пространстве печей. Тягодутьевые устройства
- •1.Причины движения газов. Свободное и вынужденное движение.
- •2. Свободные струи, их свойства.
- •3.Частично ограниченные струи.
- •4.Явление инжекции.
- •5.Тягодутьевые устройства:
- •Лекция 8: Теплопередача. Передача тепла теплопроводностью
- •1. Теплопроводность.Уравнение Фурье
- •2.Стационарная теплопроводность.
- •2.Свободная конвекция.
- •3. Вынужденная конвекция при продольном обтекании поверхности.
- •4) Вынужденная конвекция при поперечном обтекании труб и цилиндров.
- •Лекция 10: Излучение твердых тел
- •1. Общие сведения. Закон Стефана-Больцмана
- •2. Угловые коэффициенты излучения.
- •Лекция 11: Закон Кирхгофа. Излучение газов
- •1. Закон Кирхгофа.
- •2. Особенности излучения и поглощения газами тепловой энергии.
- •3. Определение степени черноты газов.
- •Лекция 12: Сложный теплообмен в рабочем пространстве печей
- •Лекция 13: Внутренний теплообмен при нагреве материалов. Нагрев тел при граничных условиях I, II, III рода
- •1.Основные понятия и определения.
- •2.Нагрев тонких тел.
- •3.Нагрев массивных тел. Дифференциальное уравнение теплопроводности Фурье
- •Лекция 14: Решение дифференциального уравнения теплопроводности Фурье при граничных условиях 3 рода.
- •1. Определение температур нагрева металла.
- •2. Определение продолжительности нагрева металла.
Лекция 12: Сложный теплообмен в рабочем пространстве печей
В металлургических печах отдельно теплопроводность, конвекция, излучение являются, как правило, лишь составной частью общего сложного процесса теплообмена.
Например, при плавлении металла в мартене тепло передается ванне от факела излучением и конвекцией. Внутри ванны расплавленной стали тепло передается теплопроводностью и конвекцией жидкого металла.
В рекуператорах, предназначенное для нагрева воздуха тепло от продуктов сгорания передается к стенке металлической или керамической трубки излучением и конвекцией; через стенку трубы – теплопроводностью.
При передаче тепла через однослойную стенку конвекцией и теплопроводностью:
На основании закона Ньютона и Фурье:
Складывая левые и правые части, получим:
где 1– коэффициент теплопередачи от газа к стенке;– толщина стенки;– коэффициент теплопроводности;2–коэффициент теплоотдачи от стенки к воздуху;
В случае, когда тепло передается через многослойную стенку:
Суммарный коэффициент теплопередачи:
В рабочем пространстве
печей происходит передача излучением
и конвенцией. Лучистый поток:
;
Конвективный
поток:
;
Суммарный поток:
Q=Qл+Qк=
–коэффициент
теплообмена излучением.
–суммарный
коэффициент теплоотдачи.
Тогда для суммарного
теплового потока:
Лекции №6
Лекция 13: Внутренний теплообмен при нагреве материалов. Нагрев тел при граничных условиях I, II, III рода
1.Основные понятия и определения.
Принято, что тепло в твердых материалах распространяется благодаря теплопроводности. Для передачи энергии необходима разность потенциалов.
Значит, при переносе тепла потенциалом является температура. Согласно, рассматриваемый процесс тесно связан с температурным полем – это совокупность мгновенных значений Т.
В общем случае Т
в любой точке пространства является
функцией координат х, у, z и времени :
– нагрев материала.
Поле, в котором Т
изменяется с течением времени, называется
неустановившимся (или нестационарным),
а если она остается постоянной –
установившимся (стационарным). Тогда
.
Температурное
поле, если оно является функцией трех,
двух и одной координаты, считается
соответственно трех, двух, и одномерным.
Наиболее простое из них – стационарное
одномерное, т. е. при
.
2.Нагрев тонких тел.
В теории нагрева все тела условно делятся на тонкие и массивные.
К тонким относятся те, по сечению которых при нагреве возникает малый перепад температур (обычно он не учитывается, нет tц), а к массивным – те, которые характеризуются значительным перепадом (и этой величиной пренебречь нельзя).
Идеально тонкими, которых в природе нет, принято считать тела, имеющие , а массивными –0. Чисто геометрически разделять тела на тонкие и массивные нельзя. Геометрически массивное тело (например, слиток) можно нагревать достаточно долго, так, что перепад t0 по сечению практически не будет. В тоже время пластину можно нагревать с большой скоростью подъема t0, так, что будет перепад t0 между поверхностью и центром.
Согласно Г.П. Иванцова относить тело к той или иной категории принято по критерию Био:
,
где S – расчетный размер тела;
– коэффициент теплопередачи;
– коэффициент теплопроводности.
Если Bi0,25, то тело считается тонким, при Bi0,5 – массивным.