
- •Министерство образования и науки Украины
- •Конспект
- •Механика газов Лекция 1: Общие сведения о свойствах и движении газов
- •1.Газы сжимаемые и несжимаемые
- •2.Газы реальные и идеальные
- •Лекция 2: Ламинарное и турбулентное движение газов. Давление газов и его разновидности
- •1. Ламинарное и турбулентное движение газов
- •2. Давление газов и его разновидности
- •Лекция 3: Статика газов
- •1. Уравнение Эйлера
- •2. Распределение избыточного давления на стенки сосуда заполненного горячим газом
- •Лекция 4: Динамика газов. Основные уравнения движения газов
- •1. Понятие о линии тока и трубке тока
- •2. Уравнение сплошности (неразрывности) движения газов
- •3. Уравнение импульсов Эйлера
- •4. Уравнение Бернулли для трубки тока идеального газа
- •5. Вывод уравнения Бернулли в избыточных давлениях
- •Лекция 5: Применение уравнения Бернулли в расчетах
- •1. Потери давления на предоление местных сопротивленй и на трение.
- •2.Истечение газов через отверстия с острыми кромками
- •3. Истечение газов через насадки
- •4. Расчет высоты дымовой трубы
- •Лекция 6: Сверхзвуковое движение газов
- •1. Общие сведения
- •2. Движение газа по трубе переменного сечения
- •3. Истечение газов через простое сопло
- •4. Сопло Лаваля. Конструкция и режимы его работы
- •Лекция 7: Движение газов в рабочем пространстве печей. Тягодутьевые устройства
- •1.Причины движения газов. Свободное и вынужденное движение.
- •2. Свободные струи, их свойства.
- •3.Частично ограниченные струи.
- •4.Явление инжекции.
- •5.Тягодутьевые устройства:
- •Лекция 8: Теплопередача. Передача тепла теплопроводностью
- •1. Теплопроводность.Уравнение Фурье
- •2.Стационарная теплопроводность.
- •2.Свободная конвекция.
- •3. Вынужденная конвекция при продольном обтекании поверхности.
- •4) Вынужденная конвекция при поперечном обтекании труб и цилиндров.
- •Лекция 10: Излучение твердых тел
- •1. Общие сведения. Закон Стефана-Больцмана
- •2. Угловые коэффициенты излучения.
- •Лекция 11: Закон Кирхгофа. Излучение газов
- •1. Закон Кирхгофа.
- •2. Особенности излучения и поглощения газами тепловой энергии.
- •3. Определение степени черноты газов.
- •Лекция 12: Сложный теплообмен в рабочем пространстве печей
- •Лекция 13: Внутренний теплообмен при нагреве материалов. Нагрев тел при граничных условиях I, II, III рода
- •1.Основные понятия и определения.
- •2.Нагрев тонких тел.
- •3.Нагрев массивных тел. Дифференциальное уравнение теплопроводности Фурье
- •Лекция 14: Решение дифференциального уравнения теплопроводности Фурье при граничных условиях 3 рода.
- •1. Определение температур нагрева металла.
- •2. Определение продолжительности нагрева металла.
5.Тягодутьевые устройства:
В практических условиях часто встречаются случаи, когда необходимо нагнетание или отсасывания газа при помощи специальных устройств. К таким устройствам относятся вентиляторы и дымососы.
Применение искусственной тяги бывает необходимо при больших сопротивлений дымового тракта или при недостаточной тяге существующей дымовой трубы. При низкой температуре дымовых газов (не более 400 – 450 С) обычно применяют центробежные дымососы (отсасывающие вентиляторы) прямого действия. При более высоких температурах используют косвенную тягу, при которой струя газов (воздух, пар) эжектирует (отсасывает) отходящие газы.
В качестве дымососов прямого действия (рисунок а) используют центробежные вентиляторы, обеспечивающие подачу воздуха под давлением, превышающие 1000 Па.
Вентиляторы,
выполненные из обычной углеродистой
стали, могут работать при температуре,
не превышающих 523К (250 С). Вентиляторы
специальной конструкции, выполненные
из жаропрочной стали, могут работать
при температуре дыма до 673 – 723К (400 –
450 С). Однако значительные затраты энергии
и зачастую недостаточная долговечность
работы ограничивает их применение.
Вентиляторы выбирают по таблицам или
номограммам в зависимости от расходов
газа (V,)
и суммарных потерь напора (давления) в
сети с учётом запаса, равного 25% - Рэфф.
Номограммы составляют для воздуха с температурой 293К (20 С), поэтому при выборе вентиляторов для перемещение газа или воздуха с другой температурой заданное давление необходимо пересчитать по формуле:
,
Па
Мощность на валу вентилятора определяется по формуле:
,
кВт
η - к.п.д. вентилятора.
Мощность электродвигателя обычно принимают на 15% больше мощности на валу вентилятора.
В основе тяг косвенного действия лежит принцип эжекции, сущность которого рассмотрена выше.
Струнные аппараты могут быть использованы как на отсос, так и на нагнетание. Если осуществляется отсос дымовых газов, то струнный аппарат работает как дымосос косвенного действия.
Рисунок – схемы работы дымососов прямого (а) и косвенного (б) действия
Лекция 8: Теплопередача. Передача тепла теплопроводностью
Теплопередача или теплообмен состоит в переходе тепла от одних тел или сред к другим, принимающих участие в общем процессе обмена тепловой энергией.
Различают три вида передачи тепла: теплопроводность, конвекцию и тепловое излучение.
Теплопроводность – передача тепла обменом энергией между микрочастицами составляющими твердые, жидкие и газообразные тела. Например между молекулами, атомами, электронами.
Конвекция – перенос тепла перемещающимся и перемешивающимися объемами газа или жидкости.
Тепловое излучение – перенос тепловой энергии в виде электромагнитных волн определенной частоты.
1. Теплопроводность.Уравнение Фурье
Передача тепла теплопроводностью возникает при наличии разности температур между отдельными частицами тела. Передача теплопроводностью, без конвенции и излучения, происходит в твердых непрозрачных телах. Атомы в более нагретой части, например, металлического стержня имеют большую кинетическую энергию, их колебания интенсивнее, чем колебания атомов в менее нагретой части стержня. Более «горячие» атомы, сталкиваясь с менее «горячими», отдают им свою энергию, восстанавливая ее непрерывно за счет подводимого извне тепла. Процесс переноса тепла идет непрерывно. Процесс переноса тепла теплопроводностью тем интенсивнее, чем резче изменяется температура, те. Е. чем больше градиент температуры. Передача тепла теплопроводностью описывается законом Фурье, который был выведен 1822 г.
где q – удельный тепловой поток Вт/м2
В соответствии с
эти законом вектор плотности теплового
потока
пропорционален по модулю градиенту
температуры и направлен в сторону
убывания температуры (поэтому знак
«–»).
Так как теплопроводность зависит от разности температур, то тепловые потоки в теле связаны с распределением температуры в этом теле – температурным полем. Если температурное поле тела меняется с течением времени, то оно является нестационарным, а передача тепла – нестационарной теплопроводностью. Неизменное во времени температурное поле называется установившимся или стационарным, а передача тепла – стационарной теплопроводностью.
Интенсивность распределения тепла характеризуется тепловым потоком.
,
Вт, Дж/с, ккал/ч
где Q – количество тепла проходящее в единицу времени через данную поверхность в перпендикулярном к ней направлении.
Удельный тепловой поток:
(Вт/м2,
ккал/м2
ч),
где F – площадь поверхности, через который осуществляется теплоперенос, м2.
это коэффициент теплопроводности Вт/м*град.
Это мощность приходящая на площадку в 1 м2 при градиенте температуры 1 град/м. Для металлов он тем выше чем выше электропроводность металлов.мет=5–385 Вт/(м*град). У сплавов коэффициент теплопроводности меньше чем у чистых металлов. С увеличением температуры коэффициент теплопроводности падает.
Для неметаллических твердых материалов более низкие 0,15–19 Вт/(м*град). С ростом температуры для большинства неметаллических твердых материалов коэффициент теплопроводности растет. Определяют его по справочникам или для определения материалов задается зависимость от температуры в виде эмпирических формул.