
- •1.Предел функции. Теоремы о пределах.
- •2.Непрерывность функции. Точки разрыва функции
- •3. Производная функции в точке. Правила, дифференцирования.
- •4.Производная сложной и обратной функции.
- •5.Геометрический и физический смысл производной.
- •6.Монотонность функции. Экстремумы функции.
- •8.Асимптоты.
- •Частные производные. Примеры решений
- •10.Производная сложной и неявной функции двух переменных
- •11.Использование частных производных в геометрии.
- •12.Экстремумы функции двух переменных.
10.Производная сложной и неявной функции двух переменных
Как известно, неявно заданная функция одной переменной определяется так: функция у независимой переменной x называется неявной, если она задана уравнением, не разрешенным относительно y :
Пример 1.11.
Уравнение
неявно задаёт две функции:
А уравнение
не задаёт никакой функции.
Теорема 1.2 (существования неявной функции).
Пусть функция z =f(х,у) и ее частные производные f'x и f'y определены и непрерывны в некоторой окрестности UM0 точки M0(x0y0). Кроме того, f(x0,y0)=0 и f'(x0,y0)≠0, тогда уравнение (1.33) определяет в окрестности UM0 неявную функцию y= y(x), непрерывную и дифференцируемую в некотором интервале D с центром в точке x0, причем y( x0)=y0.
Без доказательства.
Из теоремы 1.2 следует, что на этом интервале D:
то- есть имеет место тождество по
Поэтому
где "полная" производная находится согласно (1.31)
То есть (1.35) дает формулу нахождения производной неявно заданной функции одной переменной x .
Аналогично определяется и неявная функция двух и более переменных.
Например, если в некоторой области V пространства Oxyz выполняется уравнение:
то при некоторых условиях на функцию F оно неявно задаёт функцию
При этом по аналогии с (1.35) ее частные производные находятся так:
Пример 1.12. Считая, что уравнение
неявно задаёт функцию
найти z'x, z'y.
Решение
Имеем:
поэтому согласно (1.37) получаем ответ.
Ответ.
11.Использование частных производных в геометрии.
12.Экстремумы функции двух переменных.
Понятие максимума, минимума, экстремума функции двух переменных аналогичны соответствующим понятиям функции одной независимой переменной (см. п. 25.4).
Пусть функция z = ƒ(х;у) определена в некоторой области D, точка N(x0;y0) Î D.
Точка (х0;у0) называется точкой максимума функции z=ƒ(х;у), если существует такая d-окрестность точки (х0;у0), что для каждой точки (х;у), отличной от (хо;уо), из этой окрестности выполняется неравенство ƒ(х;у)<ƒ(хо;уо).
Аналогично
определяется точка минимума функции:
для всех точек (х; у), отличных от (х0;у0),
из d-окрестности точки (хо;уо) выполняется
неравенство: ƒ(х;у)>ƒ(х0;у0).
На рисунке 210: N1 — точка максимума, а N2 — точка минимума функции z=ƒ(x;у).
Значение функции в точке максимума (минимума) называется максимумом (минимумом) функции. Максимум и минимум функции называют ее экстремумами.
Отметим, что, в силу определения, точка экстремума функции лежит внутри области определения функции; максимум и минимум имеют локальный (местный) характер: значение функции в точке (х0;у0) сравнивается с ее значениями в точках, достаточно близких к (х0; у0). В области D функция может иметь несколько экстремумов или не иметь ни одного.
46.2. Необходимые и достаточные условия экстремума
Рассмотрим условия существования экстремума функции.
Теорема 46.1 (необходимые условия экстремума). Если в точке N(x0;y0) дифференцируемая функция z=ƒ(х;у) имеет экстремум, то ее частные производные в этой точке равны нулю: ƒ'x(х0;у0)=0, ƒ'y(х0;у0)=0.
Зафиксируем одну из переменных. Положим, например, у=у0. Тогда получим функцию ƒ(х;у0)=φ(х) одной переменной, которая имеет экстремум при х = х0. Следовательно, согласно необходимому условию экстремума функции одной переменной (см. п. 25.4), φ'(х0) = 0, т. е. ƒ'x(х0;y0)=0.
Аналогично можно показать, что ƒ'y(х0;у0) = 0.
Геометрически равенства ƒ'x(х0;у0)=0 и ƒ'y(х0;у0)=0 означают, что в точке экстремума функции z=ƒ(х;у) касательная плоскость к поверхности, изображающей функцию ƒ(х;у), параллельна плоскости Оху, т. к. уравнение касательной плоскости есть z=z0 (см. формулу (45.2)).
Замечание.
Функция может иметь экстремум в точках,
где хотя бы одна из частных производных
не существует. Например, функция
имеет
максимум в точке О(0;0) (см. рис. 211), но не
имеет в этой точке частных производных.
Точка, в которой частные производные первого порядка функции z ≈ ƒ(х; у) равны нулю, т. е. f'x=0, f'y=0, называется стационарной точкой функ ции z.
Стационарные точки и точки, в которых хотя бы одна частная производная не существует, называются критическими точками.
В критических точках функция может иметь экстремум, а может и не иметь. Равенство нулю частных производных является необходимым, но не достаточным условием существования экстремума. Рассмотрим, например, функцию z = ху. Для нее точка О(0; 0) является критической (в ней z'x=у и z'y — х обращаются в ноль). Однако экстремума в ней функция z=ху не имеет, т. к. в достаточно малой окрестности точки О(0; 0) найдутся точки для которых z>0 (точки I и III четвертей) и z < 0 (точки II и IV четвертей).
Таким образом, для нахождения экстремумов функции в данной области необходимо каждую критическую точку функции подвергнуть дополнительному исследованию.
Теорема 46.2 (достаточное условие экстремума). Пусть в стационарной точке (хо;уо) и некоторой ее окрестности функция ƒ(х;у) имеет непрерывные частные производные до второго порядка включительно. Вычислим в точке (х0;у0) значения A=f''xx(x0;y0), В=ƒ''xy(х0;у0), С=ƒ''уy(х0;у0). Обозначим
Тогда:
1. если Δ > 0, то функция ƒ(х;у) в точке (х0;у0) имеет экстремум: максимум, если А < 0; минимум, если А > 0;
2. если Δ < 0, то функция ƒ(х;у) в точке (х0;у0) экстремума не имеет.
В случае Δ = 0 экстремум в точке (х0;у0) может быть, может не быть. Необходимы дополнительные исследования.
ЗАДАЧИ
1.
Пример.
Найти
промежутки возрастания и убывания
функции .
Решение.
Первым
шагом является нахождение
обрасти определения функции.
В нашем примере выражение в знаменателе
не должно обращаться в ноль,
следовательно,
.
Переходим
к производной функции:
Для
определения промежутков возрастания
и убывания функции по достаточному
признаку решаем неравенства
и
на
области определения. Воспользуемся
обобщением метода интервалов. Единственным
действительным корнем числителя
является x
= 2,
а знаменатель обращается в ноль при x
= 0.
Эти точки разбивают область определения
на интервалы, в которых производная
функции сохраняет знак. Отметим эти
точки на числовой прямой. Плюсами и
минусами условно обозначим интервалы,
на которых производная положительна
или отрицательна. Стрелочки снизу
схематично показывают возрастание или
убывание функции на соответствующем
интервале.
Таким
образом,
и
.
В
точке x
= 2 функция
определена и непрерывна, поэтому ее
следует добавить и к промежутку
возрастания и к промежутку убывания. В
точке x
= 0 функция
не определена, поэтому эту точку не
включаем в искомые интервалы.
Приводим
график функции для сопоставления с ним
полученных результатов.
Ответ: функция
возрастает при
,
убывает на интервале (0;
2].
2.
Примеры.
Установить интервалы выпуклости и вогнутости кривой y = 2 – x2.
Найдем y '' и определим, где вторая производная положительна и где отрицательна. y' = –2x, y'' = –2 < 0 на (–∞; +∞), следовательно, функция всюду выпукла.
y = ex. Так как y'' = ex > 0 при любых x, то кривая всюду вогнута.
y = x3. Так как y'' = 6x, то y'' < 0 при x < 0 и y'' > 0 при x > 0. Следовательно, при x < 0 кривая выпукла, а при x > 0 вогнута.
3.
4. Дана функция z=x^2-y^2+5x+4y, вектор l=3i-4j и точка А(3,2). Найти dz/dl (я так понял производная функции по направлению вектора), gradz(A), |gradz(A)|. Найдем частные производные: z(по х)=2x+5 z(по y)=-2y+4 Найдем значения производных в точке А(3,2): z(по х)(3,2)=2*3+5=11 z(по y)(3,2)=-2*2+4=0 Откуда, gradz(A)=(11,0)=11i |gradz(A)|=sqrt(11^2+0^2)=11 Производная функции z по направлению вектора l: dz/dl=z(по х)*cosa+z(по у)*cosb, a,b-углы вектора l с осями координат. cosa=lх/|l|, cosb=ly/|l|, |l|=sqrt(lx^2+ly^2) lx=3, ly=-4, |l|=5. cosa=3/5, cosb=(-4)/5. dz/dl=11*3/5+0*(-4)/5=6,6.