
- •1.Живое и неживое. Фундаментальные свойства, уровни организации и функции живых систем.
- •2.Клеточные органеллы
- •3.Типы животных и растительных тканей
- •4.Белки. Структура, функции. Биосинтез белка
- •Уровни организации
- •Первичная структура
- •Вторичная структура
- •Третичная структура
- •Четвертичная структура
- •Функции белков в организме Каталитическая функция
- •Структурная функция
- •Защитная функция
- •Регуляторная функция
- •Сигнальная функция
- •Транспортная функция
- •Запасная (резервная) функция
- •Рецепторная функция
- •Моторная (двигательная) функция
- •Биосинтез
- •Универсальный способ: рибосомный синтез
- •5.Нуклеиновые кислоты. Строение, функции. Принцип матричного синтеза как основа наследственных свойств живых систем. Генетический код
- •6.Углеводы, липиды. Функции, строение
- •Строение
- •Биологические функции Энергетическая (резервная) функция
- •Функция теплоизоляции
- •Структурная функция
- •Защитная (амортизационная)
- •Увеличения плавучести
- •Простые и сложные
- •Моносахариды
- •Дисахариды
- •Олигосахариды
- •Полисахариды
- •7.Биологическое преобразование энергии. Фотосинтез, хемосинтез, дыхание
- •8.Самовоспроизведение клетки. Клеточный цикл, митоз и мейоз
- •Фазы мейоза
- •10.Принципы систематики и таксономии. Методы установления биологического родства.
- •11. Типологические особенности представителей различных царств.
- •13.Многообразие биологических видов: Вирусы как особая форма организации материи. Основные черты организации. Роль в биосфере.
- •16. Споровые растения. Основн черты организац. Роль в биосфере.
- •18. Индивидуальное развитие живых систем. Основные типы необратимых процессов – деление клеток, рост, морфогенез и дифференциация – приводящие к образованию сложного многоклеточного организма.
- •20. Теории Дарвина, Бауэра, Берга.
- •21. Современное понимание механизмов эволюции органического мира.
- •22. Биологические методы исследования эволюц процессов.
- •23. Эволюция биосферы. Представления о ноосфере. Вернадский. Теяр де Шарден. Место человека в эволюции Земли.
- •29. Основные концепции, законы и перспективы развития биологии. Биотехнология. Генная, клеточная и эмбриональная инженерии.
- •30. Законы Моргана/Менделя.
Транспортная функция
Растворимые белки, участвующие в транспорте малых молекул, должны иметь высокое сродство (аффинность) к субстрату, когда он присутствует в высокой концентрации, и легко его высвобождать в местах низкой концентрации субстрата. Примером транспортных белков можно назвать гемоглобин, который переносит кислород из лёгких к остальным тканям и углекислый газ от тканей к лёгким, а также гомологичные ему белки, найденные во всех царствах живых организмов[67].
Некоторые мембранные белки участвуют в транспорте малых молекул через мембрану клетки, изменяя её проницаемость. Липидный компонент мембраны водонепроницаем (гидрофобен), что предотвращает диффузию полярных или заряженных (ионы) молекул. Мембранные транспортные белки принято подразделять на белки-каналы и белки-переносчики. Белки-каналы содержат внутренние заполненные водой поры, которые позволяют ионам (через ионные каналы) или молекулам воды (через белки-аквапорины) перемещаться через мембрану. Многие ионные каналыспециализируются на транспорте только одного иона; так, калиевые и натриевые каналы часто различают эти сходные ионы и пропускают только один из них[68]. Белки-переносчики связывают, подобно ферментам, каждую переносимую молекулу или ион и, в отличие от каналов, могут осуществлять активный транспорт с использованием энергии АТФ. «Электростанция клетки» — АТФ-синтаза, которая осуществляет синтез АТФ за счёт протонного градиента, также может быть отнесена к мембранным транспортным белкам[69].
Запасная (резервная) функция
К таким белкам относятся так называемые резервные белки, которые запасаются в качестве источника энергии и вещества в семенах растений (например, глобулины 7S и 11S) и яйцеклетках животных[70]. Ряд других белков используется в организме в качестве источника аминокислот, которые в свою очередь являются предшественниками биологически активных веществ, регулирующих процессы метаболизма.
Рецепторная функция
Белковые рецепторы могут как находиться в цитоплазме, так и встраиваться в клеточную мембрану. Одна часть молекулы рецептора воспринимает сигнал, которым чаще всего служит химическое вещество, а в некоторых случаях — свет, механическое воздействие (например, растяжение) и другие стимулы. При воздействии сигнала на определённый участок молекулы — белок-рецептор — происходят еёконформационные изменения. В результате меняется конформация другой части молекулы, осуществляющей передачу сигнала на другие клеточные компоненты. Существует несколько механизмов передачи сигнала. Некоторые рецепторы катализируют определённую химическую реакцию; другие служат ионными каналами, которые при действии сигнала открываются или закрываются; третьи специфически связывают внутриклеточные молекулы-посредники. У мембранных рецепторов часть молекулы, связывающаяся с сигнальной молекулой, находится на поверхности клетки, а домен, передающий сигнал, — внутри[71].
Моторная (двигательная) функция
Целый класс моторных белков обеспечивает движения организма, например, сокращение мышц, в том числе локомоцию (миозин), перемещение клеток внутри организма (например, амебоидное движение лейкоцитов), движение ресничек и жгутиков, а также активный и направленный внутриклеточный транспорт (кинезин, динеин). Динеины и кинезины проводят транспортировку молекул вдоль микротрубочек с использованием гидролиза АТФ в качестве источника энергии. Динеины переносят молекулы и органоиды из периферических частей клетки по направлению к центросоме, кинезины — в противоположном направлении[72][73]. Динеины также отвечают за движение ресничек и жгутиков эукариот. Цитоплазматические варианты миозина могут принимать участие в транспорте молекул и органоидов по микрофиламентам.