
- •Содержание
- •Введение
- •Технические требования
- •Требования к компьютеру
- •Рекомендуемые параметры вычислительной техники для эффективной (профессиональной) работы с T-FLEX Анализом
- •Установка системы T-FLEX Анализ
- •Структурная организация приложения T-FLEX Анализ
- •Этапы анализа конструкций
- •Быстрое начало
- •Шаг 1. Подготовка объёмной твердотельной модели изделия
- •Шаг 2. Создание «Задачи»
- •Шаг 3. Назначение материала
- •Шаг 4.1 Наложение граничных условий. Задание закреплений
- •Шаг 4.2 Наложение граничных условий. Задание нагружений
- •Шаг 5. Выполнение расчёта
- •Шаг 6. Анализ результатов расчёта
- •Подготовка конечно-элементной модели для Анализа (Препроцессор)
- •Виды конечно-элементных моделей
- •Назначение и роль сеток
- •Виды и роль граничных условий
- •Управление «Задачами», команды управления задачами
- •Общие свойства задач
- •Задание материала
- •Построение сетки
- •Параметры сетки
- •Задание ограничений
- •Полное закрепление
- •Частичное закрепление
- •Контакт
- •Задание нагрузок
- •Механические нагрузки
- •Сила
- •Давление
- •Вращение
- •Ускорение
- •Цилиндрическая нагрузка
- •Крутящий момент
- •Тепловые нагрузки
- •Температура
- •Тепловой поток
- •Тепловая мощность
- •Конвективный теплообмен
- •Излучение
- •Сводная таблица нагрузок
- •Редактирование нагрузок и закреплений
- •Настройки и сервисные команды
- •Работа с 3D окном при подготовке элементов задач
- •Особенности работы с параметрической моделью
- •Экспорт
- •Обработка результатов (Постпроцессор)
- •Общие принципы работы с результатами
- •Настройки и сервисные команды окна результатов расчёта
- •Настройка окна результатов расчёта
- •Настройка цветовой шкалы
- •Использование датчиков для анализа результатов
- •Построение сечений
- •Генерация отчётов
- •Шаблоны отчётов
- •Перечень тэгов для формирования отчётов
- •Значение тэга
- •Пример интерпретации результата
- •Статический анализ
- •Особенности этапов статического анализа
- •Алгоритм оценки статической прочности по результатам моделирования
- •Настройки процессора линейной и нелинейной статики
- •Задача оптимизации
- •Задача об оптимизации толщины балки
- •Приложение (справочные материалы)
- •Характеристики конструкционных материалов
- •Объёмное напряжённо-деформированное состояние в точке
- •Оценка статической прочности конструкций. Теории прочности
- •Анализ устойчивости
- •Особенности этапов анализа на устойчивость
- •Алгоритм оценки устойчивости по результатам моделирования
- •Настройки Процессора анализа устойчивости
- •Частотный анализ
- •Особенности этапов частотного анализа
- •Настройки Процессора частотного анализа
- •Тепловой анализ
- •Особенности этапов теплового анализа
- •Настройки Процессора теплового анализа
- •Примеры тепловых расчётов
- •Тепловой расчёт радиатора охлаждения. Установившийся режим
- •Расчёт времени нагревания радиатора охлаждения. Нестационарный режим
- •Расчёт времени остывания радиатора охлаждения. Нестационарный режим
- •Верификационные примеры
- •Примеры расчётов задач статики
- •Изгиб консольно-защемлённой балки под действием сосредоточенной нагрузки
- •Статический расчет круглой пластины, защемленной по контуру
- •Расчет сферического сосуда давления
- •Квадратная пластина под силой в центре
- •Цилиндрический резервуар со стенками постоянной толщины
- •Примеры расчётов задач устойчивости
- •Расчет устойчивости сжатого прямого стержня
- •Устойчивость квадратной пластины
- •Устойчивость прямоугольной пластины
- •Примеры задач частотного анализа
- •Определение собственных частот колебаний балки
- •Определение первой собственной частоты колебаний круглой пластинки
- •Свободные колебания сферического купола
- •Литература

Введение
Результаты конечно-элементного моделирования (перемещения и напряжения)
Описанный алгоритм конечно-элементного моделирования применим для решения разных задач, с которыми может столкнуться современный инженер – теплопроводности, электродинамики и т.п. Благодаря перечисленным выше достоинствам МКЭ стал лидирующим методом компьютерного моделирования физических задач и, фактически, ассоциируется с целой отраслью современной индустрии программного обеспечения, известной под аббревиатурой CAE (Computer Aided Engineering).
Технические требования
Требования к компьютеру
Математическое моделирование физических явлений относится к ресурсоёмким задачам и требует серьёзных вычислительных затрат. Поэтому, для эффективного использования системы конечноэлементного моделирования рекомендуется использовать наиболее производительную вычислительную технику, доступную пользователю. Кроме этого повышения размерности решаемых задач можно достигнуть за счет использования 64-х разрядных операционных систем.
Пользователю доступны два варианта T-FLEX Анализа с точки зрения разрядности используемой операционной системы Windows:
1)T-FLEX Анализ для Windows 32-bit («обычная» Windows, например, для компьютеров Pentium III или IV). Особенностью 32-х разрядных операционных систем является наличие «физического» предела на максимальный объем адресуемой информации (около 2 Гбайт), что ограничивает возможности по расчёту систем с большим количеством конечных элементов.
2)T-FLEX Анализ для Windows 64-bit (Windows XP 64-bit, Windows Vista 64-bit). Данная система работает на процессорах с поддержкой инструкций 64-bit (например, Intel Pentium D, Intel Core2Duo, AMD 64 и др.). Операционные системы с разрядностью 64-bit позволяют адресовать значительно большие объёмы информации и позволяют решать задачи большой размерности.
9