
- •Розділ 1. Природна освітленість приміщень і забудови
- •1.1. Роль і місце світлології в містобудуванні
- •1.2. Роль світла
- •1.3. Джерела світла
- •1.4. Фізичні поняття та одиниці
- •1.5. Закони світлонадходження до приміщень
- •1.6. Види випромінювань природного світла
- •1.7. Світлокліматичне районування
- •1.8. Способи природного освітлення будинків
- •1.9. Основні вимоги до проекту природного освітлення
- •1.10. Порядок проектування природного освітлення
- •1.11. Нормування природного освітлення
- •1.12. Попередній розрахунок природного освітлення
- •1.13. Перевірний розрахунок природного освітлення
- •1.14. Класифікація світлоотворів за характером розподілу світлового потоку, що надходить до приміщення
- •1.15. Класифікація будинків за вимогами до світлового середовища
- •1.16. Суміщене інтегральне освітлення
- •Розділ 2. Штучне освітлення будинків
- •2.1. Види штучного освітлення
- •2.2. Задачі освітлення
- •2.3. Характеристики штучного освітлення
- •2.4. Нормування штучного освітлення
- •2.5. Джерела штучного освітлення, загальні характеристики
- •2.6. Лампи розжарювання
- •2.7. Основні характеристики розрядних ламп
- •2.8. Люмінесцентні лампи
- •2.9. Пускорегулюючі апарати для люмінесцентних ламп, способи зменшення пульсацій світлового потоку і підвищення економічності штучного освітлення
- •2.10. Ртутні лампи високого і надвисокого тиску
- •2.11. Натрієві лампи високого тиску
- •2.12. Інші типи розрядних ламп. Лампи високої інтенсивності
- •2.13. Світильники і прожектори
- •2.14. Поняття про розрахунок штучного освітлення
- •Розділ 3. Інсоляція забудови
- •3.1. Фізико-біологічна характеристика інсоляції і її роль у житті людей
- •3.2. Психологічна та архітектурна роль інсоляції
- •3.3. Нормування інсоляції
- •3.4. Інтенсивність опромінення житла сонцем
- •3.5. Світлова та бактерицидна опроміненість приміщень
- •3.6. Вплив інсоляції на температуру повітря у житловій забудові
- •3.7 Виникнення конвективних потоків повітря в просторі між будинками при дії інсоляції
- •3.8. Виникнення конвективного потоку в необмеженому просторі вільної території
- •3.9. Існуючі методи розрахунку інсоляції
- •3.10. Координати Сонця
- •3.11.Аналітичний спосіб розрахунку інсоляції
- •3.12. Аналітичний спосіб визначення часу початку, часу кінця і тривалості інсоляції приміщень
- •3.13. Графічні способи розрахунку інсоляції
- •3.14. Гарантійно-інсоляційні зони і їх застосування для проектування забудови
- •3.15. Вплив інсоляції на формування композиції забудови
- •3.16. Гірський рельєф і інсоляція
- •3.17. Щільність житлового фонду забудови та інсоляція
- •3.18. Дослідження ступеня затінення території житлового кварталу
- •Розділ 4. Вплив інсоляції на огороджувальні конструкції будинків (на прикладі запропонованих рішень)
- •4.1. Захист будинків від сонячного перегріву
- •4.2. Методологічні принципи врахування впливу інсоляції на огороджувальні конструкції будинків і їх можливі рішення
- •4.3. Застосування методологічних принципів для конструктивного рішення інших елементів будинку
- •Приклади розв’язання задач з архітектурної світлології Задача 1
- •Задача 2
- •Задача 3
- •Задача 4
- •Задача 5
- •Задача 6
- •Задача 7
- •Використана література
1.3. Джерела світла
Головним джерелом природної енергії є Сонце. Активність сонячного випромінювання не постійна і носить циклічний характер залежно від змін, які відбуваються на Сонці. Сонячна активність чергується з періодами відносного спокою. Активність сонячного випромінювання проявляється у спалахах на його поверхні, і тоді від нього в екваторіальній площині у межах сонячної магнітосфери спрямовуються плазмові потоки, магнітне поле яких зростає до колосальних величин у міру віддалення від нього. Ці потоки поступово охолоджуються та загинаються, замикаючись на протилежному боці Сонця, змінюючи знак магніту на протилежний. Потоки магнітосфери на своєму шляху захоплюють космічний пил, який і потрапляє у фотосферу, утворюючи плями з дещо нижчою температурою. Існують й інші, більш складні теорії плямоутворення на Сонці 10. Циклічний процес плямоутворень на Сонці відчутно впливає на земні процеси у живій і неживій природі, про які докладно розповідається у працях О.Л. Чижевського, О.І. Опаріна, С.І. Вавілова та багатьох інших учених.
Потоки
сонячної радіації, що надходять
безпосередньо до Землі, частково (рис.
1.2.) витрачаються на випарування вологи,
на утворення конвективних теплових
потоків, на передачу тепла теплопровідністю12,
29.
Частково розсіюються в атмосфері і
частково нею поглинаються. Значна
частина цих потоків відбивається від
хмар і від атмосфери у космічний простір
(42%). Лише 44% загального потоку досягає
поверхні Землі. У похмурі дні до поверхні
Землі доходять лише розсіяні промені.
Над великими промисловими містами, де
забруднення атмосфери досягає 45
значного рівня, мутність атмосфери
носить постійний характер.
За інтенсивністю і часом дії природне освітлення поділяється на денне, присмеркове й нічне. Кожен із цих видів природного освітлення характеризується різними рівнями, різними співвідношеннями між освітленістю від прямого потоку та розсіяним світлом; різним розподілом яскравості на уявній поверхні неба, відмінним спектральним складом випромінювання і динамікою освітлення.
Сонце – це величезна куля з радіусом R = 696000 км, що у 110 разів більша від Землі, і відстань між ними дорівнює 149,6 млн. км 10, 29, 93. Кожного року Земля одержує близько 61017 кВтгод променевої енергії. Це на сьогодні у 20 тис. раз перевищує потреби людства в енергії. Люди вже приступили до прямого використання сонячної енергії, але для серйозного промислового її використання необхідно буде покрити великі території суші напівпровідниковими плівками і пластинами. Можливо, більш раціональним виявиться використання вітрової енергії, яка породжена також сонячними випромінюваннями.
1.4. Фізичні поняття та одиниці
Випромінювання – це особлива форма матерії з масою спокою, що дорівнює нулю, і рухається у безповітряному просторі з постійною швидкістю 299,792106 м/с. Променевою енергією 29 називається енергія випромінювання будь-яких тіл із температурою поверхні, що вища від температури абсолютного нуля.
Енергія випромінювання вимірюється в джоулях і позначається – Qe. Для практичного оцінювання променевої енергії використовується поняття 44 променевого потоку Фе, що випромінює енергію в одну секунду, тобто
, Вт (Дж/с). (1.2)
Величину відносної спектральної світлової ефективності випромінювання, одержану за показаннями селенового приймача з нормальною спектральною чутливістю, називають світловим потоком Фv, який вимірюється в люменах (лм):
лм, (1.3)
де – відносна спектральна світлова
ефективність;
–потік
випромінювання світла 44,
86
в інтервалі довжини хвиль від
до dλ;
+; – довжина світлової хвилі у нанометрах (нм) (1 нанометр дорівнює 1/10000 мм);
Km – коефіцієнт приймача світлового потоку.
Люмен – це світловий потік, що випромінюється одиничним тілесним кутом (стерадіан), рівномірним точковим джерелом світла силою в 1 Кд (канделу).
Сила світла характеризується відношенням світлового потоку, що надходить від джерела і розподіляється в середині елементарного тілесного кута із заданим направленням, до величини цього елементарного кута:
Кд, (1.4)
де dФv – світловий потік, лм;
d – елементарний просторовий кут, стер.
Одиниця сили світла – кандела (Кд), яка дорівнює силі світла, що надходить із поверхні площею (1/600000) м2 повного випромінювача у перпендикулярному напрямку при температурі випромінювача, котра дорівнює температурі затвердіння платини при тиску 101325 Па (Н/м2). Раніше називали цю одиницю 1 свіча (св). 1 св = 1Кд.
Тілесний кут визначається за формулою
= S / r2, стер, (1.5)
де S – площа, м2, яку тілесний кут вирізає на поверхні сфери, описаної з вершини, радіусом r, м.
Поряд із силою світла Іv другою векторною величиною є яскравість світла. Це величина, яка безпосередньо сприймається оком. Яскравість елемента поверхні являє 44 собою поверхневу (рис. 1.3.) щільність сили світла у заданому напрямку, яка визначається відношенням сили світла Іv від даного елемента у заданому напрямку до площі проекції елемента на площину, перпендикулярну до заданого напрямку:
. (1.6)
Освітленість у точці поверхні визначається відношенням світлового потоку, падаючого на елемент поверхні із заданою точкою М, до площі цього елемента 29, 44:
(1.7)
де dA – елемент висвічуючої поверхні з точкою М.
Освітленість у 1 люкс (лк) створюється світловим потоком у 1 лм, який рівномірно розподілений на поверхні в 1м2.
Яскравість у точці М поверхні приймача в даному напрямку являє відношення освітленості, створеної в точці приймача на площині, перпендикулярній даному напрямку, до елементарного тілесного кута, в якому замкнений світловий потік, що створив цю освітленість:
. (1.8)
Для плоскої рівнояскравої в усіх напрямках поверхні спостереження справедливе співвідношення
. (1.9)
Звідки: І =Іcos, тобто висвітлююча плоска поверхня спостереження з однаковою яскравістю в усіх напрямках висвітлює світло за законом косинуса. Для таких поверхонь зручніше визначати поверхневу щільність випромінюваного ними світлового потоку, яка називається світимістю і являє відношення світлового потоку, випромінюваного елементом поверхні із заданою точкою, до площі цього елемента:
. (1.10)
Якщо позначити коефіцієнт світловідбиття від поверхні , а відбитий потік від площини Ф, то при рівномірному висвітленні поверхні можемо записати:
. (1.11)
У такому випадку між яскравістю та освітленістю поверхні буде залежність
. (1.12)
При проникненні світлового потоку через матове, молочне скло з коефіцієнтом пропускання τ, яскравість поверхні скла визначатиметься залежністю
. (1.13)
За характером розподілення світлових потоків, відбитих поверхнею або пропущених через прозоре тіло, розрізняють їх види:
а) направлене світловідбиття, або пропускання від дзеркальних чи полірованих та металевих поверхонь або світлопропускання через звичайне скло;
б) направлено-розсіяне світловідбиття, або пропускання від пофарбованих глянцевих поверхонь чи світлопропускання через матове скло;
в) розсіяне (дифузне) світловідбиття від оштукатурених (тинькованих) поверхонь стін, стелі чи пропускання світла через молочне скло.
При направленому і направлено-розсіяному світловідбитті характеристикою розподілення яскравостей у різних напрямках стає коефіцієнт яскравості ra, який дорівнює
(1.14)
де La – яскравість поверхні під кутом ;
Lо – яскравість ідеальної світловідбиваючої поверхні з коефіцієнтом = 1 й однаковою освітленістю з досліджуваною поверхнею.
При
падінні світлового потокуФі
на поверхню тіла частина його відбивається
Ф,
частина проходить через нього Фr
і частина поглинається Ф,
тобто
Фі = Ф + Фr + Ф , лм. (1.15)
Розділивши обидві частини рівняння на Фі, одержимо
1 = + r + , (1.16)
де – коефіцієнт світловідбиття, що дорівнює Ф/Фі; r – коефіцієнт світлопропускання, відповідно Фr/Фі; – коефіцієнт поглинання енергії світла – Ф/Фі.
При рівномірному розподіленні світлового потоку на поверхні освітленість у точці буде визначатися за формулою
(1.17)
де Фv – світловий потік, лм; А – площа поверхні, м2; І – сила світла, Кд; d – відстань від точки визначення освітлення до точкового джерела світла, м.
Освітленість у точках приміщення залежить не тільки від віддалення від вікна, а також від яскравості видимої частини небосхилу або від величини світлового потоку чи освітленості під відкритим небом. Щоб унезалежити рівень освітленості від величини яскравості небосхилу, було визнано корисним оцінювати рівень освітлення через коефіцієнт природного освітлення, який визначається за формулою
ем = Ем 100% /Ен, (1.18)
де Ем – освітленість приміщення у точці М; Ен – освітленість під відкритим небосхилом, лк.
Звідси освітленість у точці М дорівнює
Ем = ем Ен / 100%. (1.19)