
- •Трехфазный генератор
- •Соединения в звезду и треугольник, фазные и линейные величины
- •Расчет трехфазных цепей
- •Мощности в трехфазных цепях
- •Круговое вращающееся магнитное поле трехфазного тока
- •Линейные электрические цепи с источниками периодических негармонических воздействий
- •10. Расчет линейной электрической цепи при несинусоидальных периодических воздействиях
- •11.. Максимальное, среднее, действующее значения несинусоидальной функции
- •12, Активная и полная мощность несинусоидального тока
- •Четырехполюсники
- •Классификация четырехполюсников
- •Определение а–параметров с помощью режимов короткого замыкания и холостого хода
- •Нагрузочный режим четырехполюсника как результат наложения режимов холостого хода и короткого замыкания
- •Эквивалентные схемы замещения четырехполюсника
- •Симметричный четырехполюсник
- •Родственные четырехполюсники
- •Характеристические параметры четырехполюсника
- •26. Мера передачи четырехполюсника.
- •Уравнения четырехполюсника в гиперболических функциях
- •Режим согласованной нагрузки четырехполюсника
- •Передаточные функции четырехполюсника
- •30. Каскадное соединение
- •31. Последовательное соединение
- •32. Параллельное соединение
- •Теории переходных процессов
- •Классический метод расчёта переходных процессов
- •4.2.1. Определение принужденной составляющей
- •35. Определение корней характеристического уравнения
- •36. Определение постоянных интегрирования
- •37. Определение порядка цепи n
- •38.Разряд заряженной ёмкости через сопротивление r
- •39. Энергетические процессы после коммутации
- •42. Подключение индуктивности l к источнику постоянной эдс.
- •44. Подключение rc-цепи к источнику гармонического напряжения
- •Метод пространства состояний
36. Определение постоянных интегрирования
Как известно, постоянные интегрирования определяются из начальных условий, каковыми являются значения искомой функции и ее производных по (n– 1)-ую включительно в начальный момент времени 0+(«справа»). В отличие от чисто математических задач, где эти условия задаются в качестве исходных данных непосредственно, при анализе переходных процессов задаются начальные условия «слева» в моментt = 0–, предшествующий коммутации (чаще всего они формулируются самой постановкой задачи и легко определяются из расчета докоммутационного режима). Нахождение начальных условий «справа» по известным значениям начальных условий «слева» – ключевой момент в расчете переходных процессов.
Опишем процедуру отыскания начальных условий в цепи n-го порядка
для послекоммутационной схемы (
) составляют систему уравнений для мгновенных значений токов и напряжений по законам Кирхгофа, дополняют эту систему компонентными уравнениями типа
для емкости;
рассматривают эту систему уравнений в момент t = 0+с учетом независимых начальных условий, которые по правилам коммутации берутся равными начальным условиям «слева», в результате определяются зависимые начальные условия, в том числе значения первых производных от индуктивных токов и емкостных напряжений;
для отыскания значений первых производных от зависимых электрических величин и вторых производных от независимых электрических величин необходимо систему уравнений из п. 1 продифференцировать и рассмотреть ее в момент t = 0+ с учетом информации, полученной в п. 2;
процедура дифференцирования продолжается до тех пор, пока не будет найдена (n– 1)-ая производная искомой функции в 0+.
Система уравнений для определения постоянных интегрирования имеет следующий вид:
(4.9)
Здесь для определенности полагаем все корни pk вещественными разными числами. Кроме того, следует учитывать, что при наличии в цепи только источников постоянных воздействий значение производных от принужденной составляющей переходного процесса равны нулю.
Возможная схемная реализация этой технологии подробно описана в [] и позже будет пояснена на конкретном примере.
37. Определение порядка цепи n
Впростейших случаях низкопорядковых
цепей можно руководствоваться следующей
рекомендацией:порядок
цепи определяется количеством независимых
реактивных элементов в этой цепи, другими
словами, количеством
независимых начальных условий.
Так, например, фрагменты цепей, приведенных
на рис. 4.2, дают вклад в величину n:
В случае большого количества реактивных элементов в цепи порядок определяется оценочными формулами. Не претендуя на полноту изложения, в качестве примера приведем одну из них:
(4.5)
где r– число реактивных элементов;
аL,
aC– число узлов, связывающих только
индуктивные, или только ёмкостные токи
соответственно;
bL, bC– число контуров, проходящих только через реактивные элементы – индуктивности и ёмкости, соответственно, и не содержащие резисторов.
Рассмотрим применение формулы (4.5) на примере схемы (рис. 4.3): r = 4,aL = 0,aC = 0,bL = 0,bC = 1, следовательно, порядок цепиn = 4 – 1 = 3.
Часто к быстрому результату при определении порядка цепи приводит следующая рекомендация: степень характеристического уравнения равна сумме порядков дифференциальных уравнений для независимых контуров, выбранных так, чтобы порядок дифференциальных уравнений для них был наименьшим.
Так цепь на рис. 4.3 имеет три независимых контура: внешний контур имеет нулевой порядок, левая ячейка-контур – первый порядок и любой из оставшихся контуров (средняя ячейка, например) – второй порядок. Суммируя порядки этих контуров, получаем n = 3.