
Методичні вказівки до лабораторних робіт
.pdf
4
( p) W ( p) 3 ( p) ,
W ( p) |
W1 ( p) |
|
, |
(9) |
|
17W |
( p)W |
( p) |
|||
|
1 |
|
|
"-" , "+"
.
, . 7,
, , , (
, , u z) ; W ( ) W ( ) –
; W ( ) – .
|
|
|
|
|
|
|
z |
|
|
|
||||
|
|
|
|
|
|
|
|
W (p) |
|
|
|
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
u |
|
|
|
x |
|||
x0 |
|
|
|
|
|
|||||||||
W (p) |
W (p) |
|||||||||||||
|
|
|
|
|
|
|
||||||||
|
|
|
|
|
|
|
|
|||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
. 7
(7)
:
( p)
( p) ( )W ( ) . (10)
. 0 zW p
,
0 ( p) ( p)
0 ( p)
z ( p) ( p) . z( p)
, , ,
0, ,
0 )
. ,
( z = 0). (9)
c :

|
|
|
5 |
|
|
0 |
( p) |
|
W ( p) |
. |
(11) |
|
W ( p) |
||||
|
1 |
|
|
z
( . 7),
. , ,
,
, ,
(1/W ) W0(p), . 8).
z |
|
|
|
|
|
|
|
|
1 |
|
|
W (p) |
|
||
|
|
|
|
||||
W y ( p )W ( ) |
|
||||||
|
|
|
|
||||
|
|
|
|
|
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
0 |
W (p) |
|
W (p) |
|
||||
|
|
|
|
|
||||
|
|
|
|
|
||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
. 8
z )
0 ( ).
( . 8)
z ( p) |
1 |
|
W |
( ) 0 |
( p) , |
|
W ( )W ( ) |
||||||
|
|
|
|
|||
c (10) (11) |
|
|
||||
z ( p) |
W ( p) |
. |
|
|
(12) |
|
1 W ( p) |
|
|
||||
|
|
|
|
|
||
|
0 ) |
z ) |
. (11) (12)
, .
,
z ),
,
.
|
|
|||||||
: |
|
|||||||
|
( p) |
( p) |
. |
|
( p) 0 ( ) ( ) , |
|
||
|
||||||||
|
|
|
0 ( p) |
|
|
|
|
|
( p) |
0 ( p) ( ) |
1 ( ) |
. |
|
|
|||
|
|
|
||||||
|
|
|
0 ( p) |
0 |
|
|
||
|
|
|
|
|
|
|
0 ( ) (11).
6
|
( p) |
|
1 |
. |
(13) |
|
W ( p) |
||||
|
1 |
|
|
0 ) z ) ,
. ( )
( ) 0 ( ) 0 ( ) ;
( ) z ( )z( ) .
,
( ) 0 ( ) 0 ( ) z ( )z( ) . |
(14) |
|
|
|
|
( p) ( ) 0 ( ) . |
(15) |
2.3.
.
. , (
),
,
.
,
.
,
. ,
( )
(
).
. 9. ,
. ,
, 0 ,
,
. 0 .
( . 9, )
( . 9, ),
,
. ,
.

|
7 |
= 0+ . |
(16) |
|
|
|
. 9: – ; –
W ( ) |
(17) |
||||
|
|
1 |
|
||
|
|
|
|||
, , |
|
||||
W ( ) |
|
|
(18) |
||
|
|||||
|
|
|
|
||
|
|
|
|
.
,
|
|
|
|
|
|
|
|
|
(19) |
||||
|
|
, |
||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||
|
% |
. |
( . 9, ):
|
|
|
; |
(20) |
|
|
|
||||
|
|
|
|
||
|
|
|
|||
|
. |
||||
% c |
|||||
|
|
, .

8
4-16
, ,
,
.
. 10.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
|
|
|
|
|
|
|
|
|
|
|
|
Wy (p) |
|
W ( ) |
W ( ) |
||
|
|
|
|
|
|
|||
|
|
|
|
|
|
|
|
|
W ( )
10. ,
, ,
.
: , – ; = –
; – ( ) ;
– ; W ), W ), W ), W ) –
, , ,
.
, ,
.
d |
sign X |
, |
(21) |
|
|||
dt |
|
|
– .
, , ,
=0 = . |
(22) |
(22) ,
0.
, |
|
|
|
|
|
||||
|
|
.

9
,
(2).
. 10 (22)
:
Wo ( p) |
X ( p) |
|
X ( p) |
|
X ( p) |
|
( p) |
|
W ( p) |
(23). |
|
|
X ( p) |
|
X ( p) |
|
|||||||
|
( p) |
|
( p) |
|
W |
( ) |
|
||||
|
|
|
oc |
|
|
|
oc |
|
|
|
|
,
.
. ,
|
|
|
I p |
, |
||||||
TI p 1 |
|
|||||||||
|
– |
|||||||||
|
|
I |
p |
|
|
. |
|
|
|
|
|
|
|
|
|
|
|
|
|||
|
T |
pT p 2 |
T |
I |
p 1 |
|
|
|
|
|
|
|
I |
|
|
|
|
|
|
|
,
RC .
.
:
) ,
;) ,
, I
;)
, .
3. 4-16
416
,
, ,
, .
,
, .
4-16 . 11.

.11.
, ,
,
.
R33,
. R33
,
. ,
, .
,
.
.
, , (R33, R40 –
100%- ; R33, R40, R R – N%- ),
(R3, R4, R30, R32), R6, R7
R1C1 R5C2 ,
,
.
, ,
, ,
( ) .
R6 R7.
, ,
, :
) , 1
( 4 5), 2
( 2 3 ), R1 ,
3 6 ;) – 1 3
2 ( 2 3);) – 1 (
4 5), 2 (
2 3), R1 ( 1
4)R5 ( 3 6). =14R1( )
R1 ( ).
: 2 (
2 3) R5 (
3 6 ) =18R1( ).
) – 1
( 4 5), 2 (
2 3), R1 , R5 (
3 6). =4R5( ).
2
)
, “ ”,
2 ( 2 3).
=29,1R1( ), =1,92R5( ).
( . 11)
,
, .
–
( 6 ). ,
, R .
.
. ,
.
6 ,
, ( -17).
.
.
:
) “ ” –
;) “ ” –
, ,
1 250%.
, ,
R7 .
0 45%;) “ ” – ,
, ;
) “ ” – R24 R23
( ,
) , 11,
, ,
.
;) “ ” –
,
, ;
) “ ” – R1 R5
.

3
.
:
–– [ ];
–– . . . ./ . .];
–– [ . ./ . . .
.].
,
. ,
, ,
.
, ,
.12.
. 12. .
– % ;
– .
:
|
1 |
|
|
% |
(24); |
||
|
|
|
|
|
|||
|
|
% |
|||||
|
1 |
|
1 |
|
|
|
|
%
(25).
%
4.1.1
4-16
( ).
4.1.1.