development is expected to continue to help improve quality of services, increase channel capacity, and minimize adverse propagation effects such as fading and multipath interference. Progress has been significant, and it is hoped that the development of an antenna system that achieves optimum communication advantages while causing minimum or no effect on the human body will be a reality soon.
References
1.C. H. Durney, H. Massoudi, and M. F. Iskander, Radiofrequency Radiation Dosimetry Handbook, 4th Edition, Electrical Engineering Department, University of Utah, Prepared for USAF School of Aerospace Medicine, Oct. 1986.
2.M. F. Iskander, P. Barber, C. H. Durney, and H. Massoudi, “Irradiation of proloate spheroidal models of humans in the near-field of a short electric dipole,” IEEE Transactions on Microwave Theory and Techniques, vol. 28, no. 7, pp. 801–807, 1980.
3.M. F. Iskander, H. Massoudi, C. H. Durney, and S. J. Allen, “Measurement of the RF power absorption in spheroidal human and animal phantoms exposed to the near field of a dipole source,”
IEEE Transactions on Biomedical Engineering, vol. 28, pp. 258–264, March 1981.
4.M. J. Hagmann, O. P. Gandhi, and C. H. Durney, “Numerical calculation of electromagnetic energy deposition for a realistic model of man,” IEEE Transactions on Microwave Theory and Techniques, vol. 27, no. 9, pp. 804–809, 1979.
5.C. T. Tsai, H. Massoudi, C. H. Durney, and M. F. Iskander, “A procedure for calculating fields inside arbitrarily shaped, inhomogeneous dielectric bodies using linear basis functions with the moment method,” IEEE Transactions on Microwave Theory and Techniques, vol. 34, pp. 1131–1139, 1986.
6.A. E. Guy, “Analysis of electromagnetic fields induced in biological tissues by thermographic studies on equivalent phantom models,” IEEE Transactions on Microwave Theory and Techniques, vol. 19, pp. 205–214, 1971.
7.O. P. Gandhi, “Conditions of strongest electromagnetic power deposition in man and animals,”
IEEE Transactions on Microwave Theory and Techniques, vol. 23, no. 12, pp. 1021–1029, 1975.
8.A. E. Guy, M. D. Webb, and C. C. Sorensen, “Determination of power absorption in man exposed to high frequency electromagnetic fields by thermographic measurements on scale models,” IEEE Transactions on Biomedical Engineering, vol. 23, pp. 361–371, 1976.
9.ANSI C95.1-1982, “Safety levels with respect to human exposure to radio frequency electromagnetic fields, 300 kHz to 100 GHz,” American National Standards Institute, New York, Sept. 1, 1982.
10.ANSI/IEEE C95.1-1992, “American National Standard — Safety levels with respect to human exposure to radio frequency electromagnetic fields, 300 kHz to 100 GHz,” New York: IEEE, 1992
11.“Radio frequency protection guidelines,” Report of Telecommunication Technology Council for the Ministry of Posts and Telecommunications, Deliberation, No. 38, Tokyo, 1990.
12.CENELEC CLC/SC111B, European Prestandard prENV 50166-2. Human Exposure to Electromagnetic Fields High-Frequency: 10 kHz — 300 GHz, CENELEC, Brussels, Belgium, Jan. 1995.
13.O. P. Gandhi, G. Lazzi, and C. M. Furse, “Electromagnetic absorption in the human head and neck for mobile telephones at 835 and 1900 MHz,” IEEE Transactions on Microwave Theory and Techniques, vol. 44, no. 10, pp. 1884–1897, Oct. 1996.
14.M. A. Jensen and Y. Rahmat-Samii, “EM interaction of handset antennas and a human in personal communications,” Proceedings of the IEEE, vol. 83, no. 1, pp. 7–17, Jan. 1995.
15.M. Okoniewski and M. A. Stuchly, “A study of the handset antenna and human body interaction,”
IEEE Transactions on Microwave Theory and Techniques, vol. 44, no. 10, pp. 1855–1864, Oct. 1996.
16.V. Hombach, K. Meier, M. Burkhardt, E. Kuhn, and N. Kuster, “The dependence of EM energy absorption upon human-head modeling at 900 MHz,” IEEE Transactions on Microwave Theory and Techniques, vol. 44, no. 10, pp. 1865–1873, Oct. 1996.
17.P. Bernardi, M. Cavagnaro, and S. Pisa, “Evaluation of the SAR distribution in the human head for cellular phones used in a partially closed environment,” IEEE Transactions on Electromagnetic Compatibility, vol. 38, no. 3, pp. 357–366, Aug. 1996.
©2002 by CRC Press LLC
18.S. Watanabe, M. Taki, T. Nojima, and O. Fujiwara, “Characteristics of the SAR distributions in a head exposed to electromagnetic fields radiated by a handheld portable radio,” IEEE Transactions on Microwave Theory and Techniques, vol. 44, no. 10, pp. 1874–1883, Oct. 1996.
19.G. Lazzi and O. P. Gandhi, “On modeling and personal dosimetry of cellular telephone helical
antennas with the FDTD code,” IEEE Transactions on Antennas and Propagation, vol. 46, no. 4,
pp.525–530, Apr. 1998.
20.J. Wang and O. Fujiwara, “Reduction of electromagnetic absorption in the human head for portable telephones by a ferrite sheet attachment,” IEICE Transactions on Communications, vol. E80-B, no. 12, pp. 1810–1815, Dec. 1997.
21.B. M. Green and M. A. Jensen, “Diversity performance of dual-antenna handsets near operator tissue,” IEEE Transactions on Antennas and Propagation, vol. 48, no. 7, pp. 1017–1024, July 2000.
22.O. P. Gandhi and J.-Y. Chen, “Electromagnetic absorption in the human head from experimental 6-GHz handheld transceivers,” IEEE Transactions on Electromagnetic Compatibility, vol. 37, no. 4,
pp.547–558, Nov. 1995.
23.Hsing-Yi Chen and Hou-Hwa Wang, “Current and SAR induced in a human head model by the electromagnetic fields irradiated from a cellular phone,” IEEE Transactions on Microwave Theory and Techniques, vol. 42, no. 12, pp. 2249–2254, Dec. 1994.
24.I. El-Babli, A. Sebak, and N. Simons, “Application of the TML method to the interaction of EM fields with dispersive dielectric bodies,” IEE Proceedings — Microwave Antennas and Propagation, vol. 147, no. 3, pp. 211–217, Jun. 2000.
25.H. O. Ruoss, U. Jakobus, and F. M. Landstorfer, “Efficient EM analysis of handheld mobile telephones close to human head using modified method of moments,” Electronics Letters, vol. 31, no. 12, pp. 947–948, June 1995.
26.M. A. Mangoud, R. A. Abd-Alhameed, N. J. McEwan, and P. S. Excell, “SAR reduction for handset with two-element phased array antenna computed using hybrid MoM/FDTD technique,” Electronics Letters, vol. 35, no. 20, pp. 1693–1694, Sept. 1999.
27.M. J White and M. F. Iskander, “Development of a multigrid FDTD code for three-dimensional applications,” IEEE Transactions on Antennas and Propagation, vol. 45, no. 10, pp. 1512–1517, October 1997.
28.M. J White, Z. Yun, and M. F. Iskander, “A new 3D FDTD multigrid technique with dielectric traverse capabilities,” IEEE Transactions on Microwave Theory and Techniques, vol. 49, no. 3, pp. 422–430, March, 2001.
29.M. F. Iskander, Z. Yun, and R. Quintero-Illera, “Polarization and human body effects on the microwave absorption in a human head exposed to radiation from handheld devices,” IEEE Transactions on Microwave Theory and Techniques, vol. 48, no. 11, pp. 1979–1987, November, 2000.
30.N. C. Skaropoulos, M. P. Ioannidou, and D. P. Chrissoulidis, “Induced EM field in a layered eccentric sphere model of the head: plane-wave and localized source exposure,” IEEE Transactions on Microwave Theory and Techniques, vol. 44, no. 10, pp. 1963–1973, Oct. 1996.
31.L. Matens,“Canonical problems proposed within the frameword of the European COST 244 project for comparison of numerical methods used for electromagnetic calculations for mobile communications,” in Proc. PIERS, Seattle, WA, July 24–28, p. 691, 1995.
32.I. G. Zubal, C. R. Harrell, E. O. Smith, Z. Rattner, G. R. Gindi, and P. H. Hoffer, “Computerized three-dimensional segmented human anatomy,” Medical Physics and Biology, vol. 21, pp. 299–302, 1994.
33.Microwave Consultants, “Dielectric Database,” Microwave Consultants, London, pp. 1–5, 1994.
34.M. F. Iskander, R. Maini, C. H. Durney, and D. G. Bragg,“A microwave method for measuring changes in lung water content: numerical simulation,” IEEE Transactions Biomedical Engineering, vol. 28, no. 12, pp. 797–804, Dec. 1981. See also M. F. Iskander, and C. H. Durney, “A microwave method for estimating absolute value of average lung water,” Radio Science, vol. 17, no. 5S, pp. 111S–117S, Sept.–Oct. 1982.
©2002 by CRC Press LLC
35.D. A. Christensen, “A new nonperturbing temperature probe using semiconductor band edge shift,”
Journal of Bioengineering, vol. 1, pp. 541–545, 1977.
36.A. Christensen, “A review of current optical techniques for biomedical physical measurements,” in
Physical Sensors of Biomedical Applications, Boca Raton, FL: CRC Press, 1980.
37.H. Bassen, M. Swicord, and J. Abita, “A miniature broadband electric field probe,” Annals of the New York Academy of Science, vol. 247, pp. 481–493, 1974.
38.T. Nojima, S. Nishiki, and T. Kobayashi, “An experimental SAR estimation of human head exposure to UHF near fields using dry-phantom models and thermograph,” IEICE Transactions on Communications, vol. E77-B. no. 6, pp. 708–713, Jun. 1994.
39.Y. Nidawa, M. Chino, and K. Kikuchi, “Soft and dry phantom modeling material using silicone rubber with carbon fiber,” IEEE Transactions on Microwave Theory and Techniques, vol. 44, no. 10,
pp.1949–1953, Oct. 1996.
40.T. Kobayashi, T. Nojima, K. Yamada, and S. Uebayashi, “Dry phantom composed of ceramics and its application to SAR extimation,” IEEE Transactions on Microwave Theory and Techniques, vol. 41, no. 1, pp. 136–140, Jan. 1993.
41.G. Lazzi and O.P. Gandhi, “Realistically tilted and truncated anatomically based models of the human head for dosimetry of mobile telephones,” IEEE Transactions on Electromagnetic Compatibility, vol. 39, no. 1, pp. 55–61, 1997.
42.A. D. Tinniswood, C. M. Furse, and O. P. Gandhi, “Computations of SAR distributions for tow anatomically based models of the human head using CAD files of commercial telephones and the parallelized FDTD code,” IEEE Transactions on Microwave Theory and Techniques, vol. 46, no. 6,
pp.829–833, June 1998.
43.K. W. Kim and Y. Rahmat-Samii, “Handset antennas and humans at Ka-band: the importance of directional antennas,” IEEE Transactions on Antennas and Propagation, vol. 46, no. 6, pp. 949–950, Jun. 1998.
44.H. Arai, N. Igi, and H. Hanaoka, “Antenna-gain measurement of handheld terminals at 900 MHz,”
IEEE Transactions on Vehicular Technology, vol. 46, no. 3, pp. 537–543, Aug. 1997.
© 2002 by CRC Press LLC
