
- •Глава 2
- •2.1. Определения и основные понятия
- •2.1.2. Поле внутри диэлектрика
- •2.3. Виды поляризации
- •2.4. Зависимость диэлектрической проницаемости от различных факторов
- •2.4.1. Газообразные диэлектрики
- •8.2. Собственные и примесные полупроводники
- •8.2.2. Электропроводность примесных полупроводников
- •8.2.1. Электропроводность собственных полупроводников
- •Примесные уровни в германии и кремнии (определены термическим методом)
- •8.2.4. Определение типа электропроводности полупроводников
- •14.2.4. Причины, приводящие к образованию доменов
- •14.2.5. Механизм технического намагничивания и магнитный гистерезис
- •14.2.6. Магнитная проницаемость
- •1 К
- •Глава 15
- •15.1. Магнитомягкие материалы
- •15.1.1. Низкочастотные магнитомягкие материалы
- •15.1.2. Высокочастотные магнитные материалы
- •15.2. Магнитотвердые материалы
- •Глава 7. Магнитные материалы
- •7.1. Общие сведения
Глава 15
МАГНИТНЫЕ МАТЕРИАЛЫ. СТРОЕНИЕ И СВОЙСТВА
15.1. Магнитомягкие материалы
Требования, предъявляемые к свойствам магнитомягких материалов, в значительной степени определяются областью их применения. Для этих материалов характерными являются малая коэрцитивная сила, высокая магнитная проницаемость, высокая индукция насыщения даже в слабых полях. Материалы, применяемые в переменных магнитных полях, кроме того, должны иметь высокое электрическое сопротивление для уменьшения потерь на вихревые токи.
В электро- и радиотехнике магнитомягкие материалы широко Применяют в качестве магнитных изделий (разнообразных сердечни ков, магнитопроводов, полюсных наконечников, телефонных мем- 31-3833 . 481
бран,
магнитных экранов и т.д.) в
различных
приборах и аппаратах: реле,
дросселях, трансформаторах, электрических
машинах и т.д. В
микроэлектронике их используют как
элементы интегральных
схем.
Как было показано в гл. 14.2.5, значения коэрцитивной силы #с и магнитной проницаемости ц металлических магнитных материалов зависят от степени деформации кристаллической решетки и размера зерна. Чем меньше содержание примесей в материале, однороднее его структура (она должна быть однофазной), меньше внутренних напряжений, дислокаций и других дефектов, тем меньше Яс и больше ц. Поэтому металлические магнитомягкие материалы должны иметь: минимальную концентрацию вредных примесей (особенно кислорода, углерода, серы, фосфора), которые образуют нерастворимые в металле химические соединения (оксиды, карбиды, сульфиды, фосфиды), а также крупнозернистую структуру и минимальное содержание внутренних напряжений, дислокаций и других дефектов. Для этого выплавку большинства этих материалов производят в вакууме или иной инертной среде, а полученные из них магнитные изделия подвергают отжигу, который производят обычно при температуре 900— 1200°С в вакууме или в среде сухого водорода.
Диапазон рабочих частот для различных магнитомягких материалов определяется в значительной степени величиной их удельного электрического сопротивления. Чем больше удельное сопротивление материала, тем на более высоких частотах его можно применять. В области радиочастот применяют магнитомягкие материалы с удельным сопротивлением того же порядка, что у полупроводников и диэлектриков.
В постоянных и низкочастотных магнитных полях, включая звуковые частоты, применяют металлические магнитомягкие материалы с удельным сопротивлением порядка 10~7 Ом-м; их называют низкочастотными.
К низкочастотным магнитомягким материалам относятся: железо, сталь низкоуглеродистая электротехническая нелегированная, кремнистая электротехническая сталь, пермаллои, альсиферы. В области радиочастот используют высокочастотные магнитомягкие материалы с удельным сопротивлением р = 10—1010 Ом-м.
К высокочастотным магнитомягким материалам относятся: маг-нитодиэлектрики и ферриты. При ультразвуковых частотах еще можно использовать тонколистовые (А = 25—30 мкм) и рулонные холоднокатаные электротехнические стали и пермаллои (толщиной до 2—3 мкм).