
- •43 Аннотация
- •Ведение
- •1. Основные компоненты скс
- •1.1. Задача дипломного проекта
- •1.2. Структура скс
- •1.2.1. Топология скс
- •1.2.2. Технические помещения
- •1.2.3. Подсистемы скс
- •1.2.4. Коммутация в скс
- •1.2.5. Принципы администрирования скс
- •1.2.6. Кабели скс
- •1.3. Понятие классов и категорий и их связь с длинами кабельных трасс
- •1.3.1. Классы приложений, категории кабелей и разъемов скс
- •1.3.2. Ограничения на длины кабелей и шнуров скс
- •1.4. Дополнительные варианты топологического построения скс
- •1.4.1. Варианты построения горизонтальной подсистемы скс
- •1.4.2. Топологии с централизованным администрированием
- •1.5. ПринципCableSharing
- •1.6. Гарантийная поддержка современных скс
- •1.7. Электрические компоненты скс
- •1.7.1. Коммутационные шнуры
- •1.7.2. Коммутационные панели
- •1.7.2.1. Коммутационные панели типа 110
- •1.7.2.2. Коммутационные панели типа 66
- •1.7.2.3. Коммутационные панели с розетками модульных разъемов
- •1.8. Выводы
- •2. Проектирование скс
- •2.1. Задание на проектирование
- •2.2. Стадии проектирования
- •2.2. Исходные данные
- •2.3. Архитектурная стадия проектирования
- •2.4. Телекоммуникационная стадия проектирования
- •2.4.1. Проектирование горизонтальной подсистемы
- •2.4.1.1. Выбор типа и категории телекоммуникационных розеток
- •2.4.1.2. Расчет горизонтального кабеля
- •2.4.1.2.1. Выбор типа и категории
- •2.4.1.2.2. Расчет количества
- •2.4.2. Проектирование подсистемы внутренних магистралей
- •2.4.3. Подсистема кабелей оборудования
- •2.4.3.1. Выбор метода подключения сетевого оборудования к кабельной системе
- •2.4.4. Проектирование административной подсистемы
- •2.4.5. Расчет количества и определение длины оконечных и коммутационных шнуров
- •2.5. Выводы
- •3.Проектирование силовой кабельной системы
- •3.1. Силовые кабельные системы в здании
- •3.2. Выделенная компьютерная силовая кабельная система
- •3.2.1 Распределение силовых компьютерных рабочих мест по группам
- •3.2.2. Расчет состава компонент компьютерной силовой кабельной системы
- •3.2.3. Расчёт однолинейных схем
- •3.3 Система бесперебойного питания
- •3.3.1. Система бесперебойного электропитания на все здание в целом
- •3.3.2 Принципы организации системы
- •3.3.3. Функционирование ибп
- •3.3.3.1. Режимы работы ибп
- •3.3.3.2. Работа от сети
- •3.3.3.3. Работа от батареи
- •3.3.4. Подготовка помещений для размещения оборудования системы бесперебойного питания
- •3.4. Выводы
- •4. Проектирование лвс Введение
- •4.1. Семиуровневая модельOsi
- •4.1.1. Обоснование модели osi
- •4.1.2. Уровни модели osi
- •4.2. Топология сетей
- •4.3. Распространенные сетевые архитектуры
- •4.3.1. Ethernet
- •4.3.1.1. Метод множественного доступа с контролем несущей и обнаружением конфликтов (csma/cd)
- •Ieee802.3
- •4.3.1.2. Форматы кадров вIeee802.3 иEthernet
- •4.3.1.3. СетьEthernetвблизи
- •4.3.1.4. Шины, сегменты и прочее
- •4.3.1.5. 10BaseT
- •4.3.1.6.Ethernetна волоконно-оптических кабелях
- •4.3.2. Высокоскоростные варианты сети Ethernet
- •4.3.2.1. КоммутируемаяEthernet
- •4.3.2.2. Дуплексная Ethernet
- •4.3.2.3. 100-VgAnyLan
- •4.3.3. Fast Ethernet
- •4.3.4. Gigabit Ethernet
- •4.3.5. Стандарт ieee 802.5: сети Token-Ring
- •4.3.5.1. Использование маркеров в сетях 802.5
- •4.3.5.2. СетьTokenRingсо скоростью передачи 16 Мбит/с
- •4.3.5. Стандарт fddi
- •4.3.5.1. Принцип действия сети fddi
- •4.3.5.2. Отказоустойчивость сетей fddi
- •4.4. Сетевое оборудование
- •4.4.1. Концентратор (Hub)
- •4.4.2. Мост (bridge)
- •4.4.3. Коммутатор (switch)
- •4.4.3.1. КоммутацияCut-Through
- •4.4.3.2. Коммутация Interium Cut-Through
- •4.4.3.3. Коммутация Store-and-Forward
- •4.4.3.4. Использование в одной сети разных скоростей передачи
- •4.4.3.5. Гибридные коммутаторы
- •4.4.3.6. Полнодуплексные связи
- •4.4.4. Маршрутизатор (router)
- •4.4.5. Перегрузка
- •4.5. Протокол snmp
- •4.6. Технология rmon
- •4.7. Понятие технологии виртуальных сетей
- •4.8. Проектирование лвс
- •4.8.5. Реализация первого варианта
- •4.8.5.1. Техническая математическая модель лвс
- •4.8.6. Реализация второго варианта
- •4.8.6.1. Расчет параметров для текущих требований
- •4.8.6.2. Выбор активного оборудования
- •4.8.6.3. Технические характеристики
- •4.8.7. Выбор оптимального технического решения
- •4.8.7.1. Определение значимости функций
- •4.8.7.2. Сравнение вариантов
- •4.9. Выводы
- •5. Определение затрат на разработку и внедрение структурированной кабельной системы и системы бесперибойного питания
- •5.1. Инвестиции в реальные активы
- •5.2. Сметная стоимость строительно-монтажных работ
- •5.3. Затраты на приобретение материалов и оборудования, необходимого для монтажа скс
- •5.4. Расчёт эксплуатационных расходов
- •5.5. Расчёт транспортных и командировочных расходов
- •Затраты на создание скс и сбп.
- •5.6. Расчёт затрат на создание лвс
- •5.6.1. Затраты на приобретение материалов и оборудования, необходимого для монтажа лвс
- •5.6.2. Преимущества и недостатки вариантов
- •5.7. Выводы
- •6. Обеспечение безопасности условий труда оператора системы бесперибойного питания
- •6.1. Введение
- •6.1.1. Анализ условий труда
- •6.1.2. Факторы, определяющие исход поражения электрическим током
- •6.2. Основные меры защиты от поражения электрическим током
- •6.2.1. Общие сведения
- •6.2.2. Защитное заземление
- •6.2.4. Напряжение шага
- •6.2.5. Требования по заземлению
- •6.2.6. Зануление
- •6.2.7. Защитное отключение
- •6.2.9. Использование малого напряжения
- •6.2.10. Выравнивание потенциалов
- •6.3. Расчёт заземления
- •6.4. Выводы
- •Заключение
- •Список литературы
6.1.2. Факторы, определяющие исход поражения электрическим током
К факторам, влияющим на исход поражения электрическим током, относят:
Величина тока.
Величина напряжения.
Время действия.
Род и частота тока.
Путь замыкания.
Сопротивление человека.
Окружающая среда.
Фактор внимания.
Величина тока
По величине тока, токи подразделяются на:
неощущаемые (0,6 – 1,6мА);
ощущаемые (3мА);
отпускающие (6мА);
неотпускающие (10-15мА);
удушающие (25-50мА);
фибрилляционные (100-200мА);
тепловые воздействия (5А и выше).
Величина напряжения и время действия
По ГОСТ 12.1.038-82 ССБТ «Предельно допустимые величины напряжений и токов. Электробезопасность». Факторы величины напряжения и время воздействия электрического тока, приведены в табл. 1.
Таблица 6.1.
Предельно допустимые величины напряжений и токов
Время действия, сек. |
До |
До 30 |
1 |
0,5 |
0,2 |
0,1 |
Величина тока, мА. |
1 |
6 |
50 |
100 |
250 |
500 |
Величина напряжения, В. |
6 |
36 |
50 |
100 |
250 |
500 |
При кратковременном воздействии (0,1-0,5с) ток порядка 100мА не вызывает фибрилляции сердца. Если увеличить длительность воздействия до 1с, то этот же ток может привести к смертельному исходу. С уменьшением длительности воздействия значение допустимых для человека токов существенно увеличивается. При изменении времени воздействия от 1 до 0,1с допустимый ток возрастает в 16 раз.
Род и частота тока
Постоянный и переменный токи оказывают различные воздействия на организм главным образом при напряжениях до 500 В. При таких напряжениях степень поражения постоянным током меньше, чем переменным той же величины. Считают, что напряжение 120 В постоянного тока при одинаковых условиях эквивалентно по опасности напряжению 40 В переменного тока промышленной частоты. При напряжении 500В и выше различий в воздействии постоянного и переменного токов практически не наблюдаются.
Исследования показали, что самыми неблагоприятными для человека являются токи промышленной частоты (50Гц). При увеличении частоты (более 50Гц) значения неотпускающего тока возрастает. С уменьшением частоты (от 50Гц до 0) значения неотпускающего тока тоже возрастает и при частоте, равной нулю (постоянный ток – болевой эффект), они становятся больше примерно в три раза.
Значения фибрилляционного тока при частотах 50-100Гц равны, с повышением частоты до 200Гц этот ток возрастает примерно в 2 раза, а при частоте 400Гц – почти в 3,5 раза.
Путь замыкания тока
При прикосновении человека к токоведущим частям путь тока может быть различным. Всего существует 18 вариантов путей замыкания тока через человека. Основные из них:
голова – ноги;
рука – рука;
правая рука – ноги;
левая рука – ноги;
нога – нога.
Степень поражения в этих случаях зависит от того, какие органы человека подвергаются воздействию тока, и от величины тока, проходящего непосредственно через сердце. Так при протекании тока по пути «рука – рука» через сердце проходит 3,3% общего тока, по пути «левая рука - ноги» 3,7%, «правая рука – ноги» 6,7%, «нога – нога» - 0,4%. Величена неотпускающего тока по пути «рука – рука» приблизительно в два раза меньше, чем по пути «рука – ноги».
Сопротивление человека
Величина тока походящего через какой-либо участок тела человека, зависит от приложенного напряжения (напряжения прикосновения) и электрического сопротивления оказываемого току данным участком тела.
Между воздействующим током и напряжением существует нелинейная зависимость: с увеличением напряжения ток растет быстрее. Это объясняется главным образом нелинейностью электрического сопротивления тела человека. На участке между двумя электродами электрическое сопротивление тела человека в основном состоит из сопротивлений двух тонких наружных слоев кожи, касающихся электродов, и внутреннего сопротивления остальной части тела. Плохо проводящий ток наружный слой кожи, прилегающий к электроду, и внутренняя ткань, находящаяся под плохо проводящим слоем, как бы образуют обкладки конденсатора емкостью С и сопротивлением его изоляции Vн. С увеличением частоты тока сопротивление тела человека уменьшается и при больших частотах практически становится равным внутреннему сопротивлению.
При напряжении на электродах 40-45 В в наружном слое кожи возникают значительные напряженности поля, которые полностью или частично нарушают полупроводящие свойства этого слоя. При увеличении напряжения сопротивление тела уменьшается и при напряжении 100-200 В падает до значения внутреннего сопротивления тела. Это сопротивление для практических расчетов может быть принято равным 1000 Ом.